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Abstract

Cuba Huamani, Edison Fausto; Craizer, Marcos (Advisor). Affine
Minimal Surfaces with Singularities. Rio de Janeiro, 2017.
79p. Dissertação de mestrado – Departamento de Matemática ,
Pontifícia Universidade Católica do Rio de Janeiro.

In this work we study surfaces with zero affine mean curvature. They are
called affine minimal surfaces and for convex surfaces, they are also called
affine maximal surfaces. We prove that an euclidean minimal surface is also
an affine minimal surface if and only if the curvature lines of the conjugate
euclidean minimal surface are planar. For an affine maximal surface, we
describe how to recover it from the conormal vector field along a given curve.
For some choices of the conormal vector, the maximal surface is singular and
we describe conditions under which the singularities are cuspidal edges or
swallowtails.

Keywords
Planar Curvature Lines; Affine Minimal Surfaces; Affine Maximal

Surfaces; Improper Affine Maps; Swallowtails; Cuspidal Edges.
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Resumo

Cuba Huamani, Edison Fausto; Craizer, Marcos. Superfícies Mí-
nimas Afins com Singularidades. Rio de Janeiro, 2017. 79p.
Dissertação de Mestrado – Departamento de Matemática , Pontifí-
cia Universidade Católica do Rio de Janeiro.

Neste trabalho, estudamos superfícies com curvatura média afim zero.
Elas são chamadas de superfícies mínimas afins e para superfícies convexas,
também são chamadas de superfícies máximas afins. Provamos que uma
superfície mínima euclidiana também é uma superfície mínima afim se,
e somente se, as linhas de curvatura da superfície mínima euclidiana
conjugada são planas. Para uma superfície máxima afim, descrevemos como
recuperá-la do campo de vetor conormal ao longo de uma determinada
curva. Para algumas escolhas do vector conormal, a superfície máxima
é singular e descrevemos as condições sob as quais as singularidades são
arestas cuspidais ou swallowtails.

Palavras-chave
Linhas de Curvatura Planas; Superfícies Afins Mínimas; Superfícies

Afins Maximais; Aplicações Afins Imprópias; Swallowtails; Cuspidal
Edges.

DBD
PUC-Rio - Certificação Digital Nº 1521995/CA



Table of contents

1 Introduction 10
1.1 Literature Review 10
1.2 Dissertation Outline 11

2 Euclidean Differential Geometry 12
2.1 Regular surfaces 12
2.2 The Gauss Theorem and the compatibility equations 15
2.3 Euclidean minimal surfaces 17
2.3.1 The Hopf differential 18

3 Affine Differential Geometry 28
3.1 Berwald-Blaschke metric 28
3.1.1 Relation between the first fundamental affine form and the coeffi-

cients of the second euclidean fundamental form 28
3.2 Affine normal and conormal maps 29
3.2.1 Affine curvatures 30
3.3 Isothermal coordinates 31
3.4 Asymptotic coordinates 37
3.5 Improper affine spheres and affine maximal maps 43
3.5.1 Affine maximal maps 43

4 Euclidean and Affine Minimal Surfaces 45
4.1 Minimal surfaces with planar curvature lines 45
4.2 Relationship betweeen affine and euclidean minimal surfaces 47
4.2.1 Conjugate minimal surfaces 47
4.3 Finding the solution of the minimal surfaces with planar curvature lines 53
4.4 Normal vector and the parametrizations of the minimal surfaces with

planar curvature lines 58
4.4.1 Normal vector 58
4.5 Continuous deformation of minimal surfaces with planar curvature lines 59

5 Affine Maximal Surfaces with Singularities in the convex case 64
5.1 Affine maximal surfaces constructed from a curve 64
5.2 Singular curves of affine maximal maps 66
5.3 Affine maximal surface with singularities 67
5.4 Improper affine spheres with singularities 72
5.5 Examples of affine maximal surfaces 72

Bibliography 78

DBD
PUC-Rio - Certificação Digital Nº 1521995/CA



List of figures

Figure 2.1 Parametrization of a Regular Surface. 13
Figure 2.2 Catenoid. 27
Figure 2.3 Enneper surface. 27

Figure 3.1 Elliptic paraboloid. 31
Figure 3.2 Hyperbolic paraboloid. 31
Figure 3.3 Affine Trihedron and its dual. 33

Figure 4.1 Curvature lines on the Enneper surface [14]. 46
Figure 4.2 Geometrical interpretation of the Lema 4.2.4. 52
Figure 4.3 Classification diagram for non-planar minimal surfaces

with planar curvature lines [8]. 57
Figure 4.4 Deformation of minimal surfaces with planar curvature

lines [8]. 61
Figure 4.5 Deformation of minimal surfaces that are also affine

minimal maps [8]. 63

Figure 5.1 Affine maximal map with cuspidal edges. 74
Figure 5.2 Affine maximal map with cuspidal edges. 76
Figure 5.3 Affine maximal map with 3 swallowtails. 77

DBD
PUC-Rio - Certificação Digital Nº 1521995/CA



1
Introduction

The family of affine maximal surfaces in R3 is an important subject in
geometric analysis, since they are extremals of a geometric functional and
the associated Euler-Lagrange equation is a non linear fourth order partial
differential equation, which generalizes the Hessian one equation, see [7].

We introduce the notion of affine maximal map with a conformal representa-
tion, which generalizes the Weierstrass formula for improper affine spheres.

We also prove that the curvature lines of the original minimal surface co-
rrespond to asymptotic lines of its conjugate surface, the above equivalence
shows that the conjugate of the minimal surface with planar curvature lines is
an affine minimal surface. See for example [8] and [10].

Furthermore, we take the solution of the affine Cauchy problem and give the
conditions to the existence and uniqueness of affine maximal maps with the
desired singularities. In particular, we characterize when an analytic curve of
R3 is the singular curve of some affine maximal map with cuspidal edges or
swallowtails. See [1] and [7].

1.1
Literature Review

After Calabi’s work, the use of geometric methods in studying PDEs of
affine differential geometry was continued by different authors and the affine
Bernstein problem was solved affirmatively.

This lack of global regular examples has led to a recent study of affine ma-
ximal maps, that is, affine minimal surfaces with some singularities. This has
revealed an interesting global theory, where the solution of the affine Cauchy
problem shows the existence of an important amount of affine maximal sur-
faces with singular curves and isolated singularities.
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Chapter 1. Introduction 11

The study of minimal surfaces with planar curvature lines is a classical sub-
ject, having been studied by Bonnet, Enneper, and Eisenhart in the late 19-th
century as recorded in [3] and [4].

1.2
Dissertation Outline

This dissertation is organized in five chapters. Chapter 1 has the lite-
rature review and dissertation outline. In the Chapter 2 we study the basic
concepts of Euclidean differential geometry.

Chapter 3 contains a detailed explanation of the affine differential geometry
and affine maximal surfaces. We introduce the notion of Berwald-Blaschke
metric, affine conormal map, first fundamental affine form. We also give
introduce the notion of affine minimal map and improper affine spheres. It
also covers the principal mathematical tools used to understand the affine
differential geometry.

In Chapter 4 we study minimal surfaces with planar curvature lines, then we
revisit the subject from a different point of view. After calculating their metric
functions using an analytical method, we recover the Weierstrass data, and
we give parametrizations for these surfaces.

Chapter 5 contains one of the main results of this dissertation. It is the study of
surfaces with singularities, where we can take the solution of the affine Cauchy
problem and give the conditions to the existence and uniqueness of affine
maximal maps with the desired singularities. In particular, we also characterize
when an analytic curve of R3 is the singular curve of some improper affine
sphere with prescribed cuspidal edges and swallowtails.
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2
Euclidean Differential Geometry

In this chapter we give a brief introduction to the differential geometry
of surfaces in three-dimensional euclidean space. The main purpose of this
introduction is to provide the reader with the basic notions of differential
geometry and with the essential formulas that will be needed later on. Section
2.1 discusses the notion of surfaces. Moreover, the notions of tangent space,
as well as tangent and normal vector fields are defined. See [5] for more details.

2.1
Regular surfaces

There are many approaches that one can take to introduce surfaces.
Some people immediately build the formalism of differentiable manifolds, or
some others, first encounter surfaces in R3 as the solution set to the equation
F (x, y, z) = 0 with three variables, and other present surfaces as the images
of vector functions of two variables. See [5].

Definition 2.1.1 A subset S ⊂ R3 is a regular surface if, for each p ∈ S,
there exists a neighborhood V in R3 and a map Ψ : Ω→ V ∩R3 of an open set
Ω ⊂ R2 onto V ∩ S ⊂ R3 such that

1. Ψ is differentiable.

2. Ψ is a homeomorphism.

3. For each q ∈ Ω, the differential dΨq : R2 → R3 is one to one.

Definition 2.1.2 Let S be a regular surface, p ∈ S, and consider all the curves
defined on S passing through p. We define the tangent plane at p, denoted by
TpS, as the vector space of dimension 2 which contains all vectors tangent to
the family of curves at the point p.
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Chapter 2. Euclidean Differential Geometry 13

Figure 2.1: Parametrization of a Regular Surface.

Given p ∈ S and let α : (−ε, ε) → S be a differentiable parametrized curve,
with α(0) = p. The velocity vector α′(0) is called the vector tangent to S at p.
The choice of any parametrization Ψ of S determines a base {Ψu,Ψv} of TpS,
called the base associated with Ψ.

Definition 2.1.3 Let p ∈ S, the quadratic form Ip : TpS → R, defined by:

Ip(w) = 〈w,w〉 = ‖w‖2 ≥ 0,

is called the first euclidean fundamental form of the regular surface S at
p.

The first euclidean fundamental form can be expressed in the base {Ψu,Ψv}
associated with a parametrization Ψ(u, v) at p, as follows: Let w = α′(0) =
Ψuu

′ + Ψvv
′ ∈ TpS. Then,

Ip(w) = 〈Ψuu
′ + Ψvv

′,Ψuu
′ + Ψvv

′〉

= E(u′)2 + 2Fu′v′ +G(v′)2

where, E = 〈Ψu,Ψu〉, F = 〈Ψu,Ψv〉 and G = 〈Ψv,Ψv〉 are the coefficients of
the first fundamental euclidean form in the base {Ψu,Ψv} of TpS.

Definition 2.1.4 A regular surface S is orientable if it is possible to cover
S with a family of coordinate neighborhoods so that if a point p ∈ S is in
two neighborhoods of this family, then the change of coordinates has positive
Jacobian at p. The choice of family that satisfies this condition is called an
orientation of S, and S is called oriented. If it is not possible to find such a
family then S is called nonorientable.
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Chapter 2. Euclidean Differential Geometry 14

Fixed a parametrization, Ψ : Ω ⊂ R2 → S, we calculate the normal euclidean
vector at each point q ∈ Ψ(U), as:

N(q) = Ψu ×Ψv

‖Ψu ×Ψv‖
(q).

Definition 2.1.5 Let S ⊂ R3 be a surface with an orientation. The Gauss
map is defined to be N : S → S2 ⊂ R3 is defined to be p→ N(p).

The Gauss map can be defined (globally) if and only if the surface is orientable.
The Gauss map can always be defined locally (i.e. on a small piece of the
surface).

The differential of the Gauss map dNp : TpS → TpS, is a self-adjoint
linear application, that is

〈dNp(w1), w2〉 = 〈w1, dNp(w2)〉, w1, w2 ∈ TpS.

Therefore, we can associate dNp with a quadratic form Q in TpS, given by

Q(w) = 〈dNp(w), w〉, w ∈ TpS.

Definition 2.1.6 Let p ∈ S, the quadratic form IIp : TpS → R, defined by

IIp(w) = −〈dNp(w), w〉,

is called the second euclidean fundamental form of the regular surface S
at p.

The second euclidean fundamental form can be expressed in the base {Ψu,Ψv}
associated with a parametrization Ψ(u, v). In fact, let N be the normal vector
to S at p ∈ S and α(s) = Ψ(u(s), v(s)) a parametrized curve in S, with
α(0) = p. Therefore, the tangent vector to α(s) at p is α′ = Ψuu

′+ Ψvv
′. Let’s

indicate by N the restriction of the normal vector to the curve α(s). In this
way, we have

〈N(s), α′(s)〉 = 0⇒ 〈N(s), α′′(s)〉 = −〈N′(s), α′(s)〉.

Let w = α′(0) = Ψuu
′ + Ψvv

′ ∈ TpS. Then,

IIp(w) = −〈dN(α′), α′(0)〉

= −〈N′(0), α′(0)〉

= −〈N(0), α′′(0)〉

= −〈N(0),Ψuu(u′)2 + Ψuu
′′ + 2Ψuvu

′v′ + Ψvv(v′)2 −Ψvv
′′〉.
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Chapter 2. Euclidean Differential Geometry 15

Since 〈N,Ψu〉 = 〈N,Ψv〉 = 0. It follows that

IIp(w) = e(u′)2 + 2fu′v′ + g(v′)2,

where, e = 〈N,Ψuu〉, f = 〈N,Ψuv〉 and g = 〈N,Ψvv〉 are the coefficients of the
second fundamental euclidean form in the base {Ψu,Ψv} of TpS.

Definition 2.1.7 Let p ∈ S, and let dNp : TpS → TpS be the differential of
the Gauss map. The determinant of dNp is called the euclidean Gaussian
curvature K of S at p. We observe that the euclidean Gaussian curvature
can be obtained using the coefficients of the first and second fundamental form
as follows:

K = eg − f 2

EG− F 2 .

Definition 2.1.8 The mean curvature is the trace of dNp. In other words

H = −1
2 (a11 + a22) = 1

2
eG− 2fF + gE

EG− F 2 .

2.2
The Gauss Theorem and the compatibility equations

Here we are going to assign to each point of a surface a natural trihedron
given by the vectors Ψu, Ψv and N . Let S be a regular and oriented surface.
Let Ψ : Ω ⊂ R2 → S be a parametrization in the orientation of a surface S.
See [5] for more details.

By expressing the derivatives of the vectors Ψu, Ψv and N in the basis
{Ψu,Ψv,N}, we obtain

Ψuu = Γ1
11Ψu + Γ2

11Ψv + eN

Ψuv = Γ1
12Ψu + Γ2

12Ψv + fN

Ψvv = Γ1
22Ψu + Γ2

22Ψv + gN

Nu = a11Ψu + a21Ψu

Nv = a12Ψu + a22Ψu,

where the aij, i, j = 1, 2 are the coefficients of the Weingarten map and the
coefficients Γki,j, i, j, k = 1, 2 are called the Christoffel symbols of S with
parametrization Ψ(u, v) and those symbols are symmetric relative to the lower
indices and e, f and g are the coefficients of the second fundamental form of
S.

DBD
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Where the coefficients aij are given by

a11 = fF − eG
EG− F 2 , a12 = gF − fG

EG− F 2 ,

a21 = eF − fE
EG− F 2 , a22 = fF − eG

EG− F 2 .

To determine the Christoffel symbols we take the inner product with Ψu and
Ψv obtaining the system



Γ1
11E + Γ2

11F = 〈Ψuu,Ψu〉 = 1
2Eu,

Γ1
11F + Γ2

11G = 〈Ψuu,Ψv〉 = Fu − 1
2Ev,

Γ1
12E + Γ2

12F = 〈Ψuv,Ψu〉 = 1
2Ev,

Γ1
12F + Γ2

12G = 〈Ψuv,Ψv〉 = 1
2Gu,

Γ1
22E + Γ2

22F = 〈Ψvv,Ψu〉 = Fv − 1
2Gu,

Γ1
22F + Γ2

22G = 〈Ψvv,Ψv〉 = 1
2Gv.

(2.1)

It is possible to solve the above system to compute the Christoffel symbols in
terms of the first fundamental form E,F and G and their derivatives.
We can obtain relations between the Christoffel symbols and their derivatives,
since

(Ψuu)v = (Ψuv)u and (Ψvv)u = (Ψuv)v,

in each case, comparing the coefficients of Ψu, Ψv, and N. With this, we obtain
the famous Gauss equations

−EK = (Γ2
12)u − (Γ2

11)v + Γ1
12Γ2

11 + (Γ2
12)2 − Γ2

11Γ2
22 − Γ1

11Γ2
12 (2.2)

and
GK = (Γ1

22)u − (Γ1
12)v + Γ1

22Γ1
11 + Γ2

22Γ1
12 − (Γ1

12)2 − Γ2
12Γ1

22. (2.3)
Similarly, the Mainardi-Codazzi equation

ev − fu = eΓ1
12 + f(Γ2

12 − Γ1
11)− gΓ2

11.

and
fv − gu = eΓ1

22 + f(Γ2
22 − Γ1

12)− gΓ2
12.

The Mainardi-Codazzi and Gauss equations are known under the name
of compatibility equations.

Now, we state a fundamental theorem of existence of isothermal coordi-
nates.

Theorem 2.2.1 Always there exist isothermal coordinate system on any re-
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gular surface.

The proof of this theorem is delicate and will not be proved here. Its proof
may be found in [14].

A natural question is whether there exist further relations of compatibi-
lity between the first and the second fundamental forms besides those already
obtained. The following theorem stated shows that the answer is negative. In
other words, we would obtain no further relations between the coefficients E,
F, G, e, f, g and their derivatives. Actually, the Theorem is more explicit
and asserts that the knowledge of the first and second fundamental forms
determines a surface locally.

Theorem 2.2.2 (Bonnet) Let E, F, G, e, f, g be differentiable functions,
defined in an open set V ⊂ R2, with E > 0 and G > 0. Assume that the given
functions satisfy formally the Gauss and Mainardi-Codazzi equations and that
EG − F 2 > 0. Then, for every q ∈ V there exists a neighborhood U ⊂ V of
q and a diffeomorphism x : U → x(U) ⊂ R3 such that the regular surface
x(U) ⊂ R3 has E, F, G and e, f, g as coefficients of the first and second
fundamental forms, respectively. Furthermore, if U is connected and if

x̄ : U → x̄(U) ⊂ R3

is another diffeomorphism satisfying the same conditions, then there exist a
translation T and a proper linear orthogonal transformation ρ in R3 such that
x̄ = T ◦ ρ ◦ x.

2.3
Euclidean minimal surfaces

The study of minimal surfaces is an active area of research in mathematics
with many unsolved problems. Some standard examples of minimal surfaces in
R3 are the plane, the Enneper surface, the catenoid, the helicoid, and Bonnet
family. See [5]

Definition 2.3.1 A minimal surface is a parametrized surface of class C2

that satisfies the regularity condition and for which the mean curvature H is
identically 0.

Definition 2.3.2 Let Ψ(u, v) be a regular surface of class C2(Ω,R3). It has
conformal parameters u and v if

|Ψu|2 = |Ψv|2 and 〈Ψu,Ψv〉 = 0.
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2.3.1
The Hopf differential

In this section we associate to each minimal surface a holomorphic 2-
form, the so-called Hopf differential, that informs us about the distribution of
the umbilical points on the surface. Let Ψ : Ω → R3 be an immersion of an
orientable surface. Consider conformal coordinates (u, v) defined on an open
subset V of Ω. So, the mean curvature is given by

H = e+ g

2E . (2.4)

In terms of the Christoffel symbols, the second derivatives of Ψ are:

Ψuu = Eu
2EΨu −

Ev
2EΨv + eN

Ψuv = Ev
2EΨu + Eu

2EΨv + fN

Ψvv = −Eu2EΨu + Ev
2EΨv + gN.

On the other hand, the derivatives of the normal vector are

Nu = − e
E

Ψu −
f

E
Ψv and Nv = − f

E
Ψu −

g

E
Ψv. (2.5)

Furthermore, the Codazzi equations are

ev − fu = Nv ·Ψuu −Nu ·Ψuv = Ev
2E (e+ g) = EvH

fv − gu = Nv ·Ψuv −Nu ·Ψvv = −Eu2E (e+ g) = −EuH.

By differentiating 2EH = e+ g with respect to u and v, we have

2EuH + 2EHu = eu + gu, 2EvH + 2EHv = ev + gv.

With both expressions, the Codazzi equations now read as

(e− g)u + 2fv = 2EHu, (e− g)v − 2fu = −2EHv, (2.6)

respectively. Let us introduce the complex notation z = u+ iv, z̄ = u− iv and

∂z = 1
2(∂u − i∂v), ∂z̄ = 1

2(∂u + i∂v).

Define
Q(z, z̄) = e− g − 2if.

Equations (2.6) are then simplified as

DBD
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Qz̄ = EHz. (2.7)

We point out that the zeroes of Q are the umbilical points of the immersion
since Q(p) = 0 if and only if E = G, F = 0, e = g and f = 0 at p. We express
Q as follows. Let us consider the derivatives Xz and Nz

Ψz = 1
2(Ψu − iΨv), Nz = 1

2(Nu − iNv).

Thus, we have

Ψz ·Nz = −1
4(e− g − 2if) = −1

4Q(z, z̄) (2.8)

and then
Q(z, z̄) = −4Ψz ·Nz.

We study Q under a change of conformal coordinates w = h(z), where h is a
holomorphic function. Then Ψz = h′(z)Ψw, Nz = h′(z)Nw and

Q(z, z̄) = −4Ψz ·Nz = −4h′(z)2Ψw ·Nw = h′(z)2Q(w, w̄).

Hence
Q(w, w̄)dw2 = Q(w, w̄)h′(z)2dz2 = Q(z, z̄)dz2.

This equality means that Qdz2 defines a global quadratic differential form on
the surface.

Definition 2.3.3 The differential form Qdz2 is called theHopf differential.

Theorem 2.3.1 A conformal immersion Ψ : Ω → R3 has constant mean
curvature if and only if Qdz2 is holomorphic. In such case, either the set of
umbilical points is formed by isolated points, or the immersion is umbilical.

Proof. Given a conformal parametrization Ψ(u, v), From (2.7), we have Qz̄ = 0,
which is equivalent to saying that Q is holomorphic on V . Thus the umbilical
points agree with the zeroes of a holomorphic function. This means either
Q = 0 on V or the umbilical points are isolated. In the first case, an argument
of connectedness proves that the set of umbilical points is an open and closed
set of Ω and so Ω is an umbilical surface.

�

A direct consequence of the above theorem (2.3.1) is the Hopf theorem.

Theorem 2.3.2 (Hopf) The only compact constant mean surface of genus 0
in R3 is the standard sphere.
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Proof. Since the genus of Ω is zero, the uniformization theorem says that its
conformal structure is conformally equivalent to the usual structure of C. This
is defined by the parametrizations z in C and w = 1/z in C̄ − {0}. The
intersection domain of both charts is C − {0} and in this open set, the Hopf
differential Q is

Q(z) = w′(z)2Q(w) = 1
z4Q(w).

It follows that
lim
z→∞

Q(z) = lim
z→∞

( 1
z4

)
Q(w = 0) = 0.

This shows that by writing Q = Q(z) in terms of the parametrization z on
C, Q can be extended to ∞ by letting Q(∞) = 0. Therefore Q is a bounded
holomorphic function on C̄. Liouville’s theorem asserts that the only bounded
holomorphic functions on C̄ are constant. As Q(∞) = 0, then Q = 0 on C̄ and
all points are umbilical. Finally, the only umbilical closed surface in a space
form is the sphere.

�

Let Ω ⊂ R2 be a simply-connected domain with coordinates (u, v), and let
Ψ : Ω→ R3 be a conformally immersed surface. Since Ψ(u, v) is conformal,

ds2 = e2w(du2 + dv2)

for some w : Ω→ R. Then the mean curvature H is,

H := 1
2e2w (Ψuu + Ψvv) ·N.

The Hopf differential factor is given by

Q = 1
4(Ψuu − 2iΨuv −Ψvv) ·N.

The Gauss-Weingarten equations are

Ψuu = wuΨu − wvΨv + (Q+ Q̄)N

Ψvv = −wuΨu + wvΨv − (Q+ Q̄)N

Ψuv = wvΨu + wuΨv + i(Q− Q̄)N

Nu = −e−2w(Q+ Q̄)Ψu − ie−2w(Q− Q̄)Ψv

Nv = −ie−2w(Q− Q̄)Ψu + e−2w(Q+ Q̄)Ψv.

(2.9)

Since, Q̄ = 1
4(Ψuu + 2iΨuv −Ψvv) ·N and E = e2w, furthermore, w = 1

2 logE
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and its derivatives are

wu = 1
2
Eu
E
, and wv = 1

2
Ev
E
.

Note also that, Q + Q̄ + He2w = 1
4(e − g − 2if) + 1

4(e − g + 2if) + e+ g

2 =
1
2(e−g)+1

2(e+g) = e and g = −(Q+Q̄+He2w) and f = i(Q−Q̄) = Ψuv ·N.
The first and second fundamental form are

I = e2w

1 0
0 1



II =
Q+ Q̄+He2w i(Q− Q̄)

i(Q− Q̄) −(Q+ Q̄) +He2w


The principal curvatures k1 and k2 are the eigenvalues of the matrix II.I−1.
This gives the following expressions for the mean and the Gaussian curvatures

H = 1
2(k1 + k2) = 1

2tr(II.I
−1),

K = k1k2 = det(II.I−1).

Now, we compute the Gaussian curvature in terms of the Hopf differential and
the mean curvature.

K = k1k2 = det(II.I−1)

= det

 1
e2w

Q+ Q̄+He2w i(Q− Q̄)
i(Q− Q̄) −(Q+ Q̄) +He2w

1 0
0 1


= 1
e4w

[
(He2w)2 − (Q+ Q̄)2 +Q2 + Q̄2 − 2QQ̄

]
= 1
e4w (H2e4w − 4QQ̄)

= H2 − 4QQ̄e−4w.

Therefore, the Gauss-Codazzi equations are

∆w − 4QQ̄e−2w = 0 and Qz̄ = 0,

where ∆w = wuu + wvv. Remember that H = 0. Thus, K = −4QQ̄e−4w or
equivalently

Ke2w = −4QQ̄e−2w.
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We need to prove that ∆w +Ke2w = 0. From equation (2.3)

GK = (Γ1
22)u − (Γ1

12)v + Γ1
22Γ1

11 + Γ2
22Γ1

12 − (Γ1
12)2 − Γ2

12Γ1
22

= −wuu − wvv − w2
u + w2

v − w2
v + w2

u,

= −wuu − wvv,

since, E = G = e2w and F = 0. Thus, the Christoffel symbols are

Γ1
11 = wu Γ2

11 = −wv,

Γ1
12 = wv Γ2

12 = wu,

Γ1
22 = −wu Γ2

22 = wv.

From equation (2.7), we have that Qz̄ = EHz then Qz̄ = 0. Thus, we obtained
the desired result.

A point p of the surface Ψ is called umbilic if the principal curvatures
at this point coincide k1(p) = k2(p). The Hopf differential vanishes Q(p) = 0
exactly at umbilic points of the surface.

Coordinates in which both fundamental forms are diagonal are called
curvature line coordinates and the corresponding parametrization (not nece-
ssarily conformal) is called a curvature line parametrization. A curvature line
parametrization always exists in a neighborhood of a non-umbilic point. Near
umbilic points, curvature lines form more complicated patterns.

Note that the Gauss-Codazzi equations implies that the Hopf differential
factor Q is holomorphic. Moreover, the Gauss-Codazzi equation is invariant
under the deformation Q 7→ λ−2Q for λ ∈ S1 ⊂ C. In fact, when Ψ(u, v) is a
minimal surface in R3, λ ∈ S1 allows us to create a single-parameter family of
minimal surfaces Ψλ(u, v) associated to Ψ(u, v), called the associated family.
All the surfaces Ψλ(u, v) are isometric and have the same constant mean
curvature. In particular if λ−2 = i, then the new surface is called the conjugate
surface of Ψ.

From equation (2.9) we have that

Nu = −e−2w(Q+ Q̄)Ψu and Nv = e−2w(Q+ Q̄)Ψv. (2.10)

Thus, Q−Q̄ = 0. This means that Q is real. Recall from (2.7) we have that Q is
holomorphic. To prove that a real valued holomorphic function Q = a+ ib = a
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is constant, we used Cauchy Riemann equations

au = bv = av = vu = 0.

Note that both partial derivatives are zero. Thus Q′ ≡ 0. We can conclude
that Q is constant. Hence, we can normalize the Hopf differential such that
Q = −1

2 , and the Gauss-Weingarten equations become,



Ψuu = wuΨu − wvΨv −N

Ψvv = −wuΨu + wvΨv + N

Ψuv = wvΨu + wuΨv

Nu = e−2wΨu

Nv = −e−2wΨv.

(2.11)

where k1 = −e−2w and k2 = e−2w are the principal curvatures of Ψ.
Furthermore, the Gauss equation becomes the following Liouville equation

∆w − e−2w = 0.

Example 2.3.1 (Enneper surface with planar curvature lines) The
most common parametrization for Enneper surface is

Ψ(u, v) = (u− 1
3u

3 + uv2,
1
3v

3 − v − u2v, u2 − v2).

First, we show that this surface has isothermal coordinates. For this, we
compute its derivatives

Ψu = (1− u2 + v2,−2uv, 2u) and Ψv = (2uv,−1− u2 + v2,−2v).

and then we obtain the coeffients of the first fundamental form

E = 〈Ψu,Ψu〉 = (1 + u2 + v2)2 = G = e2w

and

F = 〈Ψu,Ψv〉 = 2uv(1− u2 + v2)− 2uv(−1− u2 + v2)− 4uv = 0.

Since E = G and F = 0, we have that Ψ(u, v) is isothermal. The normal vector
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is

N = Ψu ∧Ψv

‖Ψu ∧Ψv‖
= (−2u(1 + u2 + v2), 2v(1 + u2 + v2),−(u2 + v2 + 1)(u2 + v2 − 1))

(1 + u2 + v2)2

= (−2u,−2v, 1− u2 − v2)
ew

= (−2u,−2v, 1− u2 − v2)
1 + u2 + v2 .

The coefficients of the second fundamental form are e = 2, g = −2 and f = 0.
Note also that both fundamental form are diagonal, then the curvature lines
are the coordinate curves. The principal curvatures are

k1 = − 2
(1 + u2 + v2)2 = −e−2w, k2 = 2

(1 + u2 + v2)2 = e−2w.

The Hopf differential is Q = 1
4(e − g) = 1. Using, equation (2.10) we can

compute the derivatives of the normal vector

Nu = −e−2w(Q+ Q̄)Ψu = − 1
(1 + u2 + v2)2 (1− u2 + v2,−2uv, 2u),

Nv = e−2w(Q+ Q̄)Ψv = 1
(1 + u2 + v2)2 (2uv,−1− u2 + v2,−2v).

Recall that E = e2w = (1 + u2 + v2)2, then w = log(1+u2 +v2), its derivatives
are

wu = 2u
1 + u2 + v2 , wv = 2v

1 + u2 + v2 ,

wuu = 2v2 − 2u2 + 2
(1 + u2 + v2)2 and wvv = 2u2 − 2v2 + 2

(1 + u2 + v2)2 .

Note also that Enneper surface satisfies the Gauss-Codazzi equations. It is
obvious that Qz̄ = 0, since H = 0 and

∆w − 4QQ̄e−2w = 4
(1 + u2 + v2)2 − 4e−2w = 4e−2w − 4e−2w = 0.

Now we compute the auto-intersections for the Enneper surface given by

Ψ(u, v) = (u− 1
3u

3 + uv2, v − 1
3v

3 + u2v, u2 − v2).

For this, we introduce polar coordinates ρ and φ. It is

u = ρ cosφ and v = ρ sinφ for (ρ, φ) ∈ (0,∞)× (0, 2π).

Thus, Enneper surface has a parametric representation

X(ρ, φ) =
(
ρ cosφ− ρ3

3 cos(3φ), ρ sinφ+ ρ3

3 sin(3φ), ρ2 cos(2φ)
)
. (2.12)
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Note also that the components xi(ρ, φ) of this surface satisfy the relation

x2
1(ρ, φ) + x2

2(ρ, φ) + 4
3x

2
3(ρ, φ) =

(
ρ+ ρ3

3

)2

.

The points of self–intersection of Enneper surface given by the parametric
representation (2.12) must satisfy

X(ρ1, φ1) = X(ρ2, φ2), that is xi(ρ1, φ1) = xi(ρ2, φ2) for k = 1, 2, 3.

From (2.12) we have that

ρ1 + ρ3
1

3 = ρ2 + ρ3
2

3 .

The function f(t) = t+ t3

3 is obviously injective, this implies ρ1 = ρ2 = ρ. Thus
it follows from x3(ρ, φ1) = x3(ρ, φ2) that cos(2φ1) = cos(2φ2), then φ2 = π−φ1

or φ2 = 2π − φ2.

If φ2 = π − φ1, then x1(ρ, φ1) = x1(ρ, π − φ1) implies

cosφ1−
ρ2

3 cos(3φ1) = cos(π−φ1)−ρ
2

3 cos(3(π−φ1)) = −
(

cosφ1 −
ρ2

3 cos(3φ1)
)

that is x1(ρ, φ1) = −x1(ρ, φ1) = f1(ρ, φ1) = 0.
If φ2 = 2π − φ1, then it can similarly be shown that x2(ρ, φ1) = −x2(ρ, φ1) =
f2(ρ, φ1) = 0.

Thus, the lines of self–intersection of Enneper surface are

f1(ρ, φ1) = cosφ− ρ2

3 cos(3φ) = 0 and f2(ρ, φ1) = sinφ+ ρ2

3 sin(3φ) = 0.

Consequently they are in the planes u = 0 and v = 0.
The asymptotic lines satisfies

2(du)2 − 2(dv)2 = 0

Its solution is u = ±v + c, where c ∈ R is a constant. Since F = 0 and f = 0.
The curvature lines are u = c1 and v = c2, where c1 and c2 ∈ R are constants.

Example 2.3.2 (Catenoid) The parametrization of the catenoid is

Ψ(u, v) = (a cosh v cosu, a cosh v sin u, av), 0 < u < 2π, −∞ < v <∞.
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First, we need to turn π/2. Thus, the new parametrization is

Ψ(u, v) = (a cosh v cos(u− π/2), a cosh v sin(u− π/2),−av), 0 < u− π/2 < 2π, −∞ < v <∞.

= (a cosh v sin u,−a cosh v cosu,−av).

Its derivatives are

Ψu = (a cosh v cosu, a cosh v sin u, 0),

Ψv = (a sinh v sin u,−a sinh v cosu,−a).

It is easily checked that E = G = a2 cosh2 v, F = 0 and Ψuu + Ψvv = 0. Thus,
the catenoid is a minimal surface. Next, we want to compute the normal vector

N = Ψu ∧Ψv

‖Ψu ∧Ψv‖
= (a2 cosh v cosu, a2 cosh v sin u,−a2 cosh v sinh v)

a2 cosh2 v

=
(

cosu
cosh v ,

sin u
cosh v ,−

sinh v
cosh v

)
.

and
Ψuu = (−a cosh v cosu,−a cosh v sin u, 0),

Ψuv = (−a sinh v sin u,−a sinh v cosu, 0),

Ψuu = (a cosh v cosu, a cosh v sin u, 0).

Then, the coefficients of the second fundamental form are e = −a, g = a and
f = 0. Note also that both fundamental form are diagonal, then the curvature
lines are the coordinate curves. The principal curvatures are

k1 = e

E
= − 1

a cosh2 v
, k2 = g

G
= 1
a cosh2 v

.

The Hopf differential is Q = 1
4(e− g) = −a2 . Recall that E = e2w = a2 cosh2 v,

then w = log(a cosh v), its derivatives are

wv = sinh v
cosh v , wvv = 1

cosh2 v
, wu = wuu = 0.

Using, equation (2.10) we can compute the derivatives of the normal vector

Nu = −e−2w(Q+ Q̄)Ψu = 1
a cosh2 v

(a cosh v cosu, a cosh v sin u, 0),

Nv = e−2w(Q+ Q̄)Ψv = −1
a cosh2 v

(a sinh v sin u,−a sinh v cosu,−a).
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We can also verify that catenoid satisfies the Gauss-Codazzi equations. It is
obvious that Qz̄ = 0, since H = 0 and

∆w−4QQ̄e−2w = wvv−4QQ̄e−2w = 1
cosh2 v

−4a2

4 e−2w = 1
cosh2 v

− 1
cosh2 v

= 0.

Figure 2.2: Catenoid. Figure 2.3: Enneper surface.
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3
Affine Differential Geometry

In affine differential geometry we study properties of surfaces in 3-
dimensional space that are invariant under affine transformations. See [6] and
[7] for more details.

3.1
Berwald-Blaschke metric

The Berwald-Blaschke metric is invariant for Affine transformations and
also independent of system of coordinates. This metric is a quadratic form.
We shall see that this quadratic form might not be positive definite (non-convex
case).
The Berwald-Blaschke metric is given by

h = Ldu2 + 2Mdudv +Ndv2

|LN −M2|1/4
,

where L, M and N are given by

L = [Ψu,Ψv,Ψuu], M = [Ψu,Ψv,Ψuv], N = [Ψu,Ψv,Ψvv].

From now on, we shall assume that the surface is non-degenerate, that is,
LN −M2 6= 0.

3.1.1
Relation between the first fundamental affine form and the coefficients
of the second euclidean fundamental form

There is a relation between the first fundamental affine form and the
coefficients lij of the second euclidean fundamental form. In fact,

lij = N ·Ψij =
(

Ψu ∧Ψv

‖Ψu ∧Ψv‖

)
·Ψij = [Ψu,Ψv,Ψij]

‖Ψu ∧Ψv‖
,

where N = Ψu ∧Ψv

‖Ψu ∧Ψv‖
is the euclidean normal vector.

The euclidean Gaussian curvature can be obtained as follows:
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K = det(lij)
‖Ψu ∧Ψv‖4 . (3.1)

1. K < 0⇐⇒ LN −M2 < 0,

2. K = 0⇐⇒ LN −M2 = 0,

3. K > 0⇐⇒ LN −M2 > 0.

Points where LN −M2 are negative, zero or positive are called, respectively,
hyperbolic, parabolic or elliptical. Since, by hypothesis LN −M2 6= 0, we are
working only in convex case (elliptical points) and non-convex case (hyperbolic
points).

3.2
Affine normal and conormal maps

Definition 3.2.1 (Affine conormal field) Let S be a regular surface with
non-degenerate points and let Ψ : Ω ⊂ R2 → S ⊂ R3 be a parametrization, we
define the affine conormal field, given by the expression

ν = Ψu ∧Ψv

|LN −M2|1/4
, (3.2)

where L,M and N are the coefficients of the first fundamental affine form.
Note also that it is uniquely determined up to sign.

By definition, we can see that ν · dΨ = 0. Let ρ4 = ±(LN −M2), where
the signal ± depends on the point being elliptical or hyperbolic. Using this
notation we have

ν = Ψu ∧Ψv

ρ
. (3.3)

Definition 3.2.2 (Affine normal vector) We define the affine normal vec-
tor by the following equations


ν · ξ = 1

νu · ξ = 0

νv · ξ = 0.

(3.4)

Observe that, the affine normal vector does not belong to the tangent plane
to the surface S.
Differentiating the first equation in (3.4), we can easily verify that ν · ξu = 0
and ν · ξv = 0. Hence, there exists a function δ : Ω→ R such that

ξ = δ(νu ∧ νv).
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Now, we can compute the inner product of the affine normal and conormal to
obtain the function δ as follows

1 = ν · ξ = δ[ν, νu, νv].

Hence, δ = 1
[ν, νu, νv]

, i.e., the affine normal vector is

ξ = 1
[ν, νu, νv]

νu ∧ νv. (3.5)

Note also that the affine normal vector is uniquely determined up to sign. For
each point x ∈ Ω we take the line through x in the direction of the affine
normal vector ξ(x). This line, which is independent of the choice of sign for ξ,
is called the affine normal through x.

Example 3.2.1 The affine normal vector is constant in the elliptic and
hyperbolic paraboloids.

Considering the parametrization X(u, v) =
(
u, v,

1
2(u2 + v2)

)
of the elliptical

paraboloid. Notice that:

Xu = (1, 0, u), Xuu = (0, 0, 1), Xvv = (0, 0, 1),

Xv = (0, 1, v), Xuv = (0, 0, 0).

Thus, we have to,

ρ = [Xu, Xv, Xuu][Xu, Xv, Xvv]− [Xu, Xv, Xuv]2 = 1.

Hence,

ν = Xu ∧Xv

ρ
= (−u,−v, 1).

Therefore, νu = (−1, 0, 0) and νv = (0,−1, 0), then

ξ = 1
[ν, νu, νv]

(νu ∧ νv) = (0, 0, 1). (3.6)

In analogous way, considering the parametrization of the hyperbolic
paraboloid as S(u, v) =

(
u, v,

1
2(u2 − v2)

)
, it is shown that the affine normal

at any point of this surface is the vector (0, 0, 1).

3.2.1
Affine curvatures

The curvatures describe the variation of the normal vector. We saw that
ν · ξu = ν · ξv = 0. That is, the derivatives ξu and ξv are orthogonal to ν. In
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Figure 3.1: Elliptic paraboloid. Figure 3.2: Hyperbolic paraboloid.

particular ξu and ξv ∈ TpS. Therefore, we can define the Shape Operator S as
follows S : TpS → TpS given by Sp(v) = −Dvξ.

Since ξu and ξv are tangents to the surface we have that there are functions
bij : Ω→ R, i, j = 1, 2, such that

ξu = b11Ψu + b21Ψv,

ξv = b12Ψu + b22Ψv.

Therefore,
Dξ(α′) = (b11u

′ + b12v
′)Ψu + (b21u

′ + b22v
′)Ψv,

hence,

Dξ

u′
v′

 =
b11 b12

b21 b22

u′
v′


This shows that in the basis {Ψu,Ψv}, the Shape Operator Sp(v) = Dvξ is
given by the matrix B = (bij), i, j = 1, 2. Notice that this matrix is not
necessarily symmetric.

Definition 3.2.3 The coefficients bij form a matrix B = (bij), whose deter-
minant and the half of the trace are respectively the Gaussian and Mean affine
curvatures. Hence,

K = detB = b11b22 − b12b21,

H = 1
2trB = 1

2(b11 + b22).

3.3
Isothermal coordinates

In affine differential geometry, isothermal coordinates means that the
metric locally has the form

h = ρ(du2 + dv2).
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where ρ is a smooth function. In this case, we are considering a definite metric
(convex case).
Hence, we are studying coordinates with the following property.

[Ψu,Ψv,Ψuu] = [Ψu,Ψv,Ψvv] = ρ2 and [Ψu,Ψv,Ψuv] = 0. (3.7)

Now, we state and prove an important result in affine differential geometry.

Theorem 3.3.1 (Lelieuvre Formula) In locally convex surfaces with
isothermal coordinates we have that

Ψu = ν ∧ νv and Ψv = −ν ∧ νu. (3.8)

Proof. From (3.2), we have that

ν = Ψu ∧Ψv

|LN −M2|1/4
= Ψu ∧Ψv

|L|1/2
= Ψu ∧Ψv

ρ
,

since L = N and M = 0. The derivative of the conormal vector with respect
to v is

νv = ρ[(Ψuv ∧Ψv) + (Ψu ∧Ψvv)]− (Ψu ∧Ψv)ρv
ρ2

Now, using (A∧B)∧(A∧C) = [A,B,C]A. It is a straight-forward computation
that

ν ∧ νv =
(

1
ρ

Ψu ∧Ψv

)
∧
(
ρ[(Ψuv ∧Ψv) + (Ψu ∧Ψvv)]− (Ψu ∧Ψv)ρv

ρ2

)

=
(

1
ρ2 Ψu ∧Ψv

)
∧ (Ψuv ∧Ψv) +

(
1
ρ2 Ψu ∧Ψv

)
∧ (Ψu ∧Ψvv)−

(
ρv
ρ3 Ψu ∧Ψv

)
∧ (Ψu ∧Ψv)

= 1
ρ2 [Ψv,Ψu,Ψuv]Ψv + 1

ρ2 [Ψu,Ψv,Ψvv]Ψu −
ρv
ρ3 [Ψu,Ψv,Ψv]Ψu

= 1
ρ2 [Ψu,Ψv,Ψvv]Ψu = 1

ρ2ρ
2Ψu = Ψu.

In the same way, we can prove that Ψv = −ν ∧ νu.
�

Now, we prove that
ρ = [ν, νu, νv]. (3.9)

From Lelieuvre Formula (Theorem 3.3.1) we can obtain the following formula
to compute the conormal vector

Ψu ∧Ψv = (ν ∧ νv) ∧ (−ν ∧ νu)

= −[ν, νv, νu]ν

= [ν, νu, νv]ν.
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Thus,
Ψu ∧Ψv

[ν, νu, νv]
= ν.

From (3.3) we have ν = 1
ρ

Ψu ∧Ψv. Now we can conclude that

ρ = [ν, νu, νv].

Figure 3.3: Affine Trihedron and its dual.

We also can compute the derivatives of the conormal vector νu and νv as follows

Ψv ∧ ξ = (−ν ∧ νu) ∧ (−1
ρ
νv ∧ νu)

= 1
ρ

(νu ∧ ν) ∧ (νu ∧ νv)

= 1
ρ

[νu, ν, νv]νu

= −νu.

Similarly, we also can compute the derivative of the conormal vector ν with
respect to v.

Ψu ∧ ξ = (ν ∧ νv) ∧ (−1
ρ
νv ∧ νu)

= 1
ρ

(νv ∧ ν) ∧ (νv ∧ νu)

= 1
ρ

[νv, ν, νu]νv

= νv.

or equivalently
νu = ξ ∧Ψv, and νv = Ψu ∧ ξ. (3.10)

We can obtain another formula for the affine metric ρ using Lelieuvre
Formula and the formula for the affine normal vector
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[Ψu,Ψv, ξ] = [ν ∧ νv,−ν ∧ νu,
1
ρ
νu ∧ νv]

= −1
ρ

((ν ∧ νv) ∧ (ν ∧ νu)) · (νu ∧ νv)

= −1
ρ

[ν, νv, νu]ν · (νu ∧ νv)

= ρ

ρ
ν · (νu ∧ νv)

= [ν, νu, νv].

Thus,
ρ = [ν, νu, νv] = [Ψu,Ψv, ξ].

Now, we find a relation between the conormal vector ν and the mean affine
curvature H.

Theorem 3.3.2 Let Ψ : Ω → R3 be a smooth function with isothermal
coordinates. We have that

νuu + νvv = 2ρHν. (3.11)

where ρ is the affine metric, ν is the conormal vector and H is the mean affine
curvature. In other words 4hν = −Hν, where 4hν := −νuu + νvv

2ρ .

Proof. From Lelieuvre Formula we have that

Ψu = ν ∧ νv, Ψv = −ν ∧ νu.

Then, computing its derivatives with respect to v and u respectively we have

Ψuv = ν ∧ νvv, Ψvu = −ν ∧ νuu.

Ψ is a smooth function, then Ψuv = Ψvu. Hence,

ν ∧ νvv = −ν ∧ νuu

Thus,
ν ∧ (νuu + νvv) = 0

Now, we can conclude that νuu + νvv = αν.
From the definition of affine normal vector ν · ξ = 1. Thus,

(νuu + νvv) · ξ = α.
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Equation (3.4) gives us νv · ξ = 0, differentiating with respect to v, we have

νvv · ξ + νv · ξv = 0,

also we have that νu · ξ = 0, differentiating with respect to u, we have

νuu · ξ + νu · ξu = 0.

Now, using Definition (3.2.3) we have that

νuu · ξ = −νu · ξu
= −νu · (b11Ψu + b21Ψv)

= −b11νu · (ν ∧ νv)− b21νu · (−ν ∧ νu)

= −b11[νu, ν, νv] + b21[νu, ν, νu]

= b11ρ.

Similarly,

νvv · ξ = −νv · ξv
= −νv · (b12Ψu + b22Ψv)

= −b12νv · (ν ∧ νv)− b22νv · (−ν ∧ νu)

= −b12[νv, ν, νv] + b22[νv, ν, νu]

= b22ρ.

Then,
(νuu + νvv) · ξ = νuu · ξ + νvv · ξ = (b11 + b22)ρ = 2ρH

Hence, we can conclude that

νuu + νvv = 2ρHν.

Furthermore,
4hν = −Hν,

since 4hν := −νuu + νvv
2ρ .

Thus, we obtained a relationship between the mean affine curvature H
and the Laplacian of the affine conormal vector.

�

Furthermore, from Theorem (3.3.1), we know that Ψu = ν ∧ νv differentiating
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with respect to u and Ψv = −ν∧νu differentiating with respect to v, we obtain

Ψuu = (νu ∧ νv) + (ν ∧ νvu),

and
Ψvv = (−νv ∧ νu)− (ν ∧ νuv).

Hence,
Ψuu + Ψvv = 2νu ∧ νv = 2ρ1

ρ
νu ∧ νv = 2ρξ.

Thus, we proved that
Ψuu + Ψvv = 2ρξ.

From Theorem (3.3.2), we have that νuu · ξ = −νu · ξu = b11ρ and νvv · ξ =
−ν·ξv = b22ρ. Using the definition of affine normal vector (3.4), νv · ξ = 0,
differentiating with respect to u, we have

νvu · ξ + νv · ξu = 0.

Hence,

νvu · ξ = −νv · ξu
= −νv · (b11Ψu + b21Ψv)

= −b11νv · (ν ∧ νv)− b21νv · (−ν ∧ νu)

= −b11[νv, ν, νv] + b21[νv, ν, νu]

= b21ρ.

Note also from Definition (3.4), we have that νu · ξ = 0, differentiating with
respect to v, we have

νuv · ξ + νu · ξv = 0.

Thus,

νuv · ξ = −νu · ξv
= −νu · (b12Ψu + b22Ψv)

= −b12νu · (ν ∧ νv)− b22νu · (−ν ∧ νu)

= −b12[νu, ν, νv] + b22[νu, ν, νu]

= b12ρ.

Hence, in the convex case we have that b12 = b21.
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Now, we will find other formulas to compute the coefficients of the matrix
B. Recall from (3.10) we have that, νu = ξ ∧ Ψv and νv = Ψu ∧ ξ and every
entry (bij) of the matrix B is given by the following formula

b11 = −1
ρ
νu · ξu = −1

ρ
[ξ,Ψv, ξu] = 1

ρ
[ξu,Ψv, ξ]

b12 = −1
ρ
νu · ξv = −1

ρ
[ξ,Ψv, ξv] = 1

ρ
[ξv,Ψv, ξ]

b21 = −1
ρ
νv · ξu = −1

ρ
[Ψu, ξ, ξu] = 1

ρ
[Ψu, ξu, ξ]

b22 = −1
ρ
νv · ξv = −1

ρ
[Ψu, ξ, ξv] = 1

ρ
[Ψu, ξv, ξ].

Hence, we have calculated the coefficients of the Shape Operator.
Recall that ν · ξ = 1 and ν · ξu = ν · ξv = 0. Hence ξu and ξv ∈ TpS. To

see that B = Dvξ is self-adjoint, it is sufficient to prove that

ξu · νv = ξv · νu.

We know that ν · ξu = 0 and ν · ξv = 0, then differentiating both equations
with respect to v and u respectively, we have

νv · ξu + ν · ξvu = 0 and νu · ξv + ν · ξuv = 0.

Thus,
νv · ξu = −ν · ξuv = νu · ξv.

Hence, we can conclude that the matrix B = Dvξ is self-adjoint.

3.4
Asymptotic coordinates

For non-convex case, we can take asymptotic parameters (u, v), i.e.,

h = 2ρdudv,

where ρ is a smooth function. Hence, we are studying coordinates with the
following property.

[Ψu,Ψv,Ψuu] = [Ψu,Ψv,Ψvv] = 0, [Ψu,Ψv,Ψuv] = ρ2. (3.12)

Theorem 3.4.1 (Lelieuvre Formula) In locally hyperbolic surfaces with
asymptotic coordinates, we have that
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Ψu = ν ∧ νu and Ψv = −ν ∧ νv. (3.13)

Proof. From (3.2), we have that

ν = Ψu ∧Ψv

|LN −M2|1/4
= Ψu ∧Ψv

|M |1/2
= Ψu ∧Ψv

ρ
,

since L = N = 0 and M = ρ2. The derivative of the conormal vector respect
to v is

νv = ρ[(Ψuv ∧Ψv) + (Ψu ∧Ψvv)]− (Ψu ∧Ψv)ρv
ρ2 .

Now, using (A∧B)∧(A∧C) = [A,B,C]A. It is a straight-forward computation
that

ν ∧ νv =
(

1
ρ

Ψu ∧Ψv

)
∧
(
ρ[(Ψuv ∧Ψv) + (Ψu ∧Ψvv)]− (Ψu ∧Ψv)ρv

ρ2

)

=
[(

1
ρ2 Ψu ∧Ψv

)
∧ (Ψuv ∧Ψv)

]
+
[(

1
ρ2 Ψu ∧Ψv

)
∧ (Ψu ∧Ψvv)

]
−
[(
ρv
ρ3 Ψu ∧Ψv

)
∧ (Ψu ∧Ψv)

]

= 1
ρ2 [Ψv,Ψu,Ψuv]Ψv + 1

ρ2 [Ψu,Ψv,Ψvv]Ψu −
ρv
ρ3 [Ψu,Ψv,Ψv]Ψu

= 1
ρ2 [Ψv,Ψu,Ψuv]Ψv

= − 1
ρ2ρ

2Ψv

= −Ψv.

In the same way, we can prove that Ψu = ν ∧ νu.
�

Now, we shall prove that

ρ = [ν, νv, νu]. (3.14)

From Lelieuvre Formula (Theorem 3.4.1) it follows that

Ψu ∧Ψv = (ν ∧ νu) ∧ (−ν ∧ νv)

= −[ν, νu, νv]ν

Thus,
−Ψu ∧Ψv

[ν, νu, νv]
= ν,

Now using (3.3), we have ν = 1
ρ

Ψu ∧Ψv, so

ρ = [ν, νv, νu].
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Hence, we have been obtained the affine normal and conormal vectors.

ξ = 1
ρ
νv ∧ νu and ν = 1

ρ
Ψu ∧Ψv.

We also can compute the derivatives of the conormal vector ν as follows

Ψv ∧ ξ = (−ν ∧ νv) ∧ (1
ρ
νv ∧ νu)

= 1
ρ

(νv ∧ ν) ∧ (νv ∧ νu)

= 1
ρ

[νv, ν, νu]νv

= −νv.

In analogous way, we can compute the derivative of the conormal vector ν with
respect to v.

Ψu ∧ ξ = (ν ∧ νu) ∧ (1
ρ
νv ∧ νu)

= 1
ρ

(νu ∧ ν) ∧ (νu ∧ νv)

= 1
ρ

[νu, ν, νv]νu

= νu.

Hence, we can conclude that,

νv = ξ ∧Ψv and νu = Ψu ∧ ξ. (3.15)

We can get another formula for the affine metric ρ using Lelieuvre Formula
and the formula for the affine normal vector

[Ψu,Ψv, ξ] =
[
ν ∧ νu,−ν ∧ νv,

1
ρ
νv ∧ νu

]

= −1
ρ

((ν ∧ νu) ∧ (ν ∧ νv)) · (νv ∧ νu)

= −1
ρ

[ν, νu, νv]ν · (νv ∧ νu) = ρ

ρ
ν · (νv ∧ νu) = [ν, νv, νu].

Thus,
ρ = [ν, νv, νu] = [Ψu,Ψv, ξ].

Now we can find a relation between the conormal vector ν and the mean affine
curvature in the indefinite case.
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Theorem 3.4.2 Let Ψ : Ω → R3 be a smooth function with asymptotic
parameters. And let ν the affine conormal vector. Let H the mean affine
curvature. We have that

νuv = ρHν. (3.16)
where ρ = [ν, νv, νu] > 0 is the affine metric. In other words, 4hν = −2Hν,
where 4hν := −νuv

2ρ .

Proof. From Lelieuvre Formula we have that

Ψu = ν ∧ νu, Ψv = −ν ∧ νv.

Then, computing its derivatives respect to v and u respectively we have

Ψuv = νv ∧ νu + ν ∧ νuv, Ψvu = −νu ∧ νv − ν ∧ νvu.

Ψ is a smooth function, then Ψuv = Ψvu. Hence,

ν ∧ νuv = −ν ∧ νvu.

Thus,
ν ∧ νuv = 0.

Now, we can conclude that νuv = αν.
Using the above equation and the definition of affine normal vector

ν · ξ = 1. We have that,
νuv · ξ = α.

From (3.4), we know that νv · ξ = 0. Differentiating with respect to u, we have

νvu · ξ + νv · ξu = 0,

also we have that νu · ξ = 0, differentiating with respect to v, we have

νuv · ξ + νu · ξv = 0.

Using Definition 3.2.3 we have

νvu · ξ = −νv · ξu
= −νv · (b11Ψu + b21Ψv)

= −b11νv · (ν ∧ νu)− b21νv · (−ν ∧ νv)

= −b11[νv, ν, νu] + b21[νv, ν, νv]

= b11ρ.
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Similarly,

νuv · ξ = −νu · ξv
= −νu · (b12Ψu + b22Ψv)

= −b12νu · (ν ∧ νu)− b22νu · (−ν ∧ νv)

= −b12[νu, ν, νu] + b22[νu, ν, νv]

= b22ρ.

From those two equations, we can conclude that b11 = b22 when we are working
in the non-convex case.
To prove that the Shape operator S is self-adjoint, it is enough to show that

ξu · νv = νu · ξv.

It is obvious, since b11 = b22, where b11 = −νv · ξu and b22 = −νu · ξv.
Therefore,

2νuv · ξ = (νuv + νvu) · ξ = νuv · ξ + νvu · ξ = (b11 + b22)ρ = 2ρH

Hence, we can conclude that
νuv = ρHν.

Furthermore,
4hν = −2Hν,

since 4hν := −νuv2ρ .
Thus, we have a relationship between the mean affine curvature H and the
Laplacian of the affine conormal vector.

�

Now we want to compute the rest of the coefficients of the matrix B. From
Theorem 3.4.2, we have that νvu ·ξ = −νv ·ξu = b11ρ and νuv ·ξ = −νu ·ξv = b22ρ.

From the definition of affine normal vector (3.4), νv ·ξ = 0, differentiating
with respect to v, we have

νvv · ξ + νv · ξv = 0.
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Hence,

νvv · ξ = −νv · ξv
= −νv · (b12Ψu + b22Ψv)

= −b12νv · (ν ∧ νu)− b22νv · (−ν ∧ νv)

= −b12[νv, ν, νu] + b22[νv, ν, νv]

= b12ρ.

From Definition (3.4), we have that νu · ξ = 0, differentiating with respect to
u, we have

νuu · ξ + νu · ξu = 0.

Thus,

νuu · ξ = −νu · ξu
= −νu · (b11Ψu + b21Ψv)

= −b11νu · (ν ∧ νu)− b21νu · (−ν ∧ νv)

= −b11[νu, ν, νu] + b21[νu, ν, νv]

= b21ρ.

The following equations give us other formula to compute the coefficients
of the Shape Operator.
From (3.15). We have that, νv = ξ ∧Ψv and νu = Ψu ∧ ξ.

b11 = −1
ρ
νv · ξu = −1

ρ
[ξ,Ψv, ξu] = 1

ρ
[ξu,Ψv, ξ]

b12 = −1
ρ
νv · ξv = −1

ρ
[ξ,Ψv, ξv] = 1

ρ
[ξv,Ψv, ξ]

b21 = −1
ρ
νu · ξu = −1

ρ
[Ψu, ξ, ξu] = 1

ρ
[Ψu, ξu, ξ]

b22 = −1
ρ
νu · ξv = −1

ρ
[Ψu, ξ, ξv] = 1

ρ
[Ψu, ξv, ξ].

Finally, we calculated the coefficients of the matrix B.

Furthermore, from Theorem 3.4.2, we know that ν ‖ νuv. Where by ‖ we
indicate parallel to. Hence, from Lelieuvre Formula, we know that Ψu = ν∧νu,
differentiating the above equation with respect to v, we have

Ψuv = (νv ∧ νu) + (ν ∧ νuv) = νv ∧ νu = ρ
1
ρ
νv ∧ νu = ρξ.
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Thus, we obtained the next formula

Ψuv = ρξ.

3.5
Improper affine spheres and affine maximal maps

In this section, we introduce the notion of affine minimal surface and
affine minimal maps. We also define an improper affine sphere.

3.5.1
Affine maximal maps

Surfaces whose affine mean curvature H is identically zero are called
affine-minimal surfaces, because the equation H = 0 is the Euler-Lagrange
equation characterizing surfaces whose affine area is stationary (critical) with
respect to smooth deformations with compact interior support. In the convex
case, we prefer to designate them as maximal, rather than minimal (as in the
case of euclidean geometry), because the second variation of the affine area for
such surfaces is always negative. E. Calabi was the first person who used this
notation in [11].

In other words, we study surfaces with zero affine mean curvature that
are called affine minimal surfaces and for convex surfaces, they are also called
affine maximal surfaces.

Definition 3.5.1 Surfaces with vanishing affine mean curvature are called
affine minimal surfaces.

Definition 3.5.2 An immersion Ψ : Ω→ R3 with constant affine normal ξ is
called an improper affine sphere.

Remark 1 An improper affine sphere is an affine minimal surface.

Remark 2 Minimal affine surfaces are equivalent to ν is harmonic. In fact,
in the convex case from Theorem (3.3.2) we have νuu + νvv = 0 if and only if
H = 0.
In the indefinite case from Theorem (3.4.2) we also have νuv = 0 if and only
if H = 0.

Conversely, assume that the conormal affine vector ν : Ω ⊂ R2 → R3

is harmonic and Im(ν) ⊂ plane, we shall prove that Ψ is an improper affine
sphere.
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Without loss of generality we can suppose that the plane is z = 1. If
Im(ν) ⊂ plane, then the paramatrization for the conormal vector is ν(u, v) =
(v1(u, v), v2(u, v), 1), we can easily verify that the normal vector ξ = (0, 0, 1)
satisfies the equation (3.4). Note that (3.4) is equivalent to following system
of equations


ν · ξ = 1,

ν · ξu = 0,

ν · ξv = 0.

Thus, we can conclude that ξ is constant. It means that Ψ is an improper
affine sphere.

Definition 3.5.3 Let Ω be a regular surface. We say that a map Ψ : Ω→ R3

is an affine maximal map if there exists a harmonic vector field ν such that
[ν, νu, νv] 6= 0 at Ω\SΨ, where SΨ is the set of singular curves and Ψ is given as
in (3.13). In other words, Ψ is an affine minimal map if it is an affine minimal
surface and it admits certain singularities at points where [ν, νu, νv] = 0.

The singular set SΨ of an affine maximal map Ψ is the set of points
where ρ = [ν, νu, νv] vanishes.

Observe that in this case the affine normal ξ may not be well-defined on
SΨ. Of course, when SΨ = ∅ we have an affine minimal surface, which is an
improper affine sphere if ξ is constant.
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4
Euclidean and Affine Minimal Surfaces

In this chapter, we shall see when an euclidean minimal surface is at the
same time euclidean and affine minimal surface. The precise relation between
them turns out to be quite subtle, so we begin by obtaining and solving a
system of a partial differential equation describing the metric function of the
euclidean minimal surface. Later, we obtain a single-parameter deformation
of all minimal surfaces preserving the planar curvature line condition. Finally,
we state the classification, parametrization, and deformation of all minimal
surfaces with planar curvature lines. See [8] and [10] for more details.

4.1
Minimal surfaces with planar curvature lines

In this section, we shall use the notation of the Chapter 2 we attain an
additional partial differential equation regarding w from the planar curvature
line condition, allowing us to solve for w. See [8].

Lemma 4.1.1 For non-planar umbilic-free minimal surfaces with isothermal
coordinates (u, v) that are curvature lines, the following statements are equi-
valent

1. u-curvature lines are planar,

2. v-curvature lines are planar,

3. wuv + wuwv = 0.

Proof. The u-curvature lines are planar if and only if

[Xu, Xuu, Xuuu] = 0.

However, from (2.9),

Xuuu = (wuu + w2
u − w2

v − e−2w)Xu + (−2wuwv − wuv)Xv − wuN.
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Therefore, a u-curvature line is planar if and only if

[Xu, Xuu, Xuuu] = [Xu, wuXu − wvXv −N, (−2wuwv − wuv)Xv − wuN ]

= [Xu,−wvXv −N, (−2wuwv − wuv)Xv − wuN ]

= [Xu,−wvXv, (−2wuwv − wuv)Xv − wuN ]+

+ [Xu,−N, (−2wuwv − wuv)Xv − wuN ]

= [Xu,−wvXv,−wuN ]− [Xu, N, (−2wuwv − wuv)Xv]

= wuwv[Xu, Xv, N ]− [N, (−2wuwv − wuv)Xv, Xu]

= wuwve
−2w + (−2wuwv − wuv)[N,Xu, Xv]

= −e−2w(wuwv + wuv) = 0.

Similarly, (2.9) implies that a v-curvature line is planar if and only if
wuv + wuwv = 0.

�

Example 4.1.1 The Enneper surface (Example 2.3.1) satisfies the planar
curvature line condition.

It is easy to see that wuv + wuwv = 0, since w = log(1 + u2 + v2). Where its
derivatives are

wuv = −4uv
(1 + u2 + v2)2 = −wuwv.

Figure 4.1: Curvature lines on the Enneper surface [14].

Example 4.1.2 We can also see that the catenoid (Example 2.3.2) satisfies
the planar curvature line condition.
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In fact, recall that w = log(a cosh v). Its derivatives are

wu = 0, wv = sinh v
cosh v and wuv = 0.

Thus, it is obvious that wuv + wuwv = 0.

4.2
Relationship betweeen affine and euclidean minimal surfaces

In this section, we shall prove that the conjugate of an euclidean minimal
surface with planar curvature lines is an affine minimal surface. For this, we
need first to introduce the notion of conjugate surface. See [8] for more details.

4.2.1
Conjugate minimal surfaces

A minimal surface is related to another minimal surface, known as its
conjugate minimal surface, in an interesting and important way. Recall from
complex analysis, that if f(u, v) = f 1(x, y) + if 2(x, y) is an analytic function,
then the Cauchy-Riemann equations hold for f . That is,

f 1
u = f 2

v and f 1
v = −f 2

u .

In such a case, f 2 is called the harmonic conjugate of f 1. Also, if f is analytic,
then

f ′(z) = 1
2(f 1

u + if 2
u).

Definition 4.2.1 Let X and Y be isothermal parametrizations of minimal
surfaces such that their component functions are pairwise harmonic conjugates.
That is,

Xu = Yv and Xv = −Yu. (4.1)
In such a case, X and Y are called conjugate minimal surfaces.

Any two conjugate minimal surfaces can be joined through a one-
parameter family of minimal surfaces by the equation

Z = (cos t)X + (sin t)Y,

where t ∈ R3. Note that when t = 0 we have the minimal surface parametrized
by X, and when t = π

2 we have the minimal surface parametrized by Y . So
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for 0 ≤ t ≤ π

2 , we have a continuous parameter of minimal surfaces known as
associated surfaces.

Theorem 4.2.1 Let X be an euclidean minimal surface. Then the curvature
lines of X corresponds to the asymptotic lines of its conjugate surface Y .

Proof. We know that a line of curvature satisfies the next equation

(fE − eF )(u′)2 + (gE − eG)u′v′ + (gF − fG)(v′)2 = 0. (4.2)

Since F = 0, E = G and g = −e the above equation becomes

fE(u′)2 + 2gEu′v′ − fE(v′)2 = 0.

It is equivalently to,

f(u′)2 + 2gu′v′ − f(v′)2 = 0. (4.3)

Now, as we have seen in Chapter 3, a curve X ◦ γ is asymptotic if and only if

Lu̇2 + 2Mu̇v̇ +Nv̇2 = 0,

where L = [Xu, Xv, Xuu], M = [Xu, Xv, Xuv], N = [Xu, Xv, Xvv] and

lij = 〈N, Xij〉 =
〈
Xu ×Xv

‖Xu ×Xv‖
, Xij

〉
= [Xu, Xv, Xij]
‖Xu ×Xv‖

, for i, j = 1, 2.

where e = l11, f = l12 and g = l22. Hence, e = ‖Xu ×Xv‖L, f =
‖Xu ×Xv‖M and g = ‖Xu ×Xv‖N. We know that, if X and Y are conjugate
minimal surfaces, then

Xu = Yv and Xv = −Yu. (4.4)

Hence, their derivatives are

Xuu = Yvu, Xvv = −Yuv and Xuv = Yvv, Xvu = −Yuu.

Recall that,

e = 〈N, Xuu〉 = 〈N, Yuv〉 = f̄ = ‖Xu ×Xv‖M,

f = 〈N, Xuv〉 = 〈N, Yvv〉 = ḡ = ‖Xu ×Xv‖N,

g = 〈N, Xvv〉 = 〈N,−Yuv〉 = −f̄ = −‖Xu ×Xv‖M.
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Hence, using equation (4.3) and replacing the above values we have that

ḡ(u′)2 − 2f̄u′v′ − ḡ(v′)2 = 0,

−ē(u′)2 − 2f̄u′v′ − ḡ(v′)2 = 0,

L(u′)2 + 2Mu′v′ +N(v′)2 = 0.

�

Theorem 4.2.2 The conjugate of an euclidean minimal surface with planar
curvature lines is an euclidean and affine minimal surface.
Conversely, the conjugate of an euclidean and affine minimal surface is an
euclidean minimal surface with planar curvature lines.

Proof. Recall from Chapter 3 we have that

ν = |K|−1/4N = |k1k2|−1/4N = ewN. (4.5)

Its derivative with respect to u is

νu = wue
wN + ewNu = ewwuN + e−2wXue

w = ewwuN + e−wXu.

Now, using Theorem 3.4.2 we can compute νuv and prove that it is equal to
zero to show that the surface is an affine minimal surface. That is

νuv = wve
wwuN + ewwuvN + ewwuNv − wve−wXu + e−wXuv

= ewN(wuwv + wuv) + ewwu(−e−2wXv)− e−wwvXu + e−w(wvXu + wuXv)

= ewN(wuwv + wuv)

= N(ew)uv = 0.

Since, wuwv + wuv = 0. We obtained the desired result.
�

Example 4.2.1 The helicoid is an affine minimal surface.

We can easily verified that the helicoid

Y (u, v) = (a sinh v cosu, a sinh v sin u, au), 0 < u < 2π, −∞ < v <∞.

is the conjugate surface of the catenoid (Example 2.3.2). Since

Xu = (a cosh v cosu, a cosh v sin u, 0) = −Yv,

Xv = (a sinh v sin u,−a sinh v cosu,−a) = Yu,
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the normal vector is the same as the catenoid

N =
(

cosu
cosh v ,

sin u
cosh v ,−

sinh v
cosh v

)

and the coefficients of the second fundamental form of the helicoid are ē = ḡ =
0 and f̄ = e = −a.

From Theorem 4.2.1, we can conclude that the curvature lines of the
catenoid are the asymptotic lines of the helicoid (conjugate surface). Recall
that the conormal vector is given by the following formula

ν = |K|−1/4N = |k1k2|−1/4N = ewN = (a cosu, a sin u,−a sinh v).

Its derivatives are

νu = (−a sin u, a cosu, 0) and νuv = (0, 0, 0).

Hence, we can conclude that helicoid is an affine minimal surface.

Similarly, we can prove the conjugate Enneper surface is an affine minimal
surface.

Example 4.2.2 The conjugate of Enneper surface is an affine minimal sur-
face.

We can easily verify that the conjugate of the Enneper surface with planar
curvature lines is again an Enneper surface. The parametrization of this surface
is

Y (u, v) =
(
v + v3

3 − u
2v, u+ u3

3 − uv
2, 2uv

)
.

Its derivatives are

Yu = (−2uv, 1 + u2 − v2, 2v) and Yv = (1 + v2 − u2,−2uv, 2u)

and the normal vector is

N = (−2u,−2v, 1− u2 − v2)
1 + u2 + v2 .

The coefficients of the first fundamental form are Ẽ = G̃ = E = G =
(1 + u2 + v2)2 and G̃ = −F = 0. Furthermore, the coefficients of the second
fundamental form are ẽ = −f = 0, g̃ = f = 0 and f̃ = −g = 2. Finally, the
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Gaussian curvature is

K = eg − f 2

EG− F 2 = −4
(1 + v2 + u2)4

Now we compute the conormal affine vector

ν = |k1k2|−1/4N =
(

(1 + u2 + v2)4

−4

)1/4 ((−2u,−2v, 1− u2 − v2)
1 + u2 + v2

)

= (−2u,−2v, 1− u2 − v2)
(−4)1/4 .

and its partial derivatives are

νu = (−2, 0,−2u)
(−4)1/4 and νuv = 0.

Hence, we can conclude that the conjugate Enneper surface is an affine mini-
mal surface.

Now, we will show that the unique affine minimal surface with planar
asymptotic lines is the hyperbolic paraboloid.
Recall that in the indefinite case Ψ is an affine minimal surface if and only
if νuv = 0, where its solution is given by ν(u, v) = α(u) + β(v), where α and
β ∈ R3.

When Ψ is an improper affine sphere we can assume that the conormal
vector is ν(u, v) = (α1(u) + β1(v), α2(u) + β2(v), 1).

Lemma 4.2.3 Ψ is an improper affine sphere with planar asymptotic lines, if
and only if, α and β are contained in a straight line.

Proof. We know that a surface Ψ has planar asymptotic lines when
[Ψu,Ψuu,Ψuuu] = 0. Using Lelieuvre formula we have that Ψu = ν ∧ νu and
Ψuu = ν ∧ νuu and Ψuuu = ν ∧ νuuu + νu ∧ νuu, then

Ψu ∧Ψuu = (ν ∧ νu) ∧ (ν ∧ νuu) = [ν, νu, νuu]ν

and

[Ψu,Ψuu,Ψuuu] = (Ψu∧Ψuu)·νuuu = [ν, νu, νuu]ν·(ν∧νuuu+νu∧νuu) = [ν, νu, νuu]2 = 0.

Similarly,
[Ψv,Ψvv,Ψvvv] = [ν, νv, νvv]2 = 0.
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On the other hand,

[ν, νu, νuu] =


α1(u) + β1(v) α2(u) + β2(v) 1

α′1(u) α′2(u) 0
α′′1(u) α′′12(u) 0


= [α′, α′′].

Thus, [α′, α′′] = 0. It means that α is contained in a straight line. Similarly,
we can easily prove that β is contained in a straight line.

�

Lemma 4.2.4 If Ψ is an affine minimal surface with planar asymptotic lines,
then the conormal affine vector ν is contained in a plane.
Moreover, we can conclude that Ψ is an improper affine sphere.

Proof. Recall that Ψ has planar asymptotic lines if and only if [ν, νu, νuu] = 0.
And the above equation is equivalent to [α + β, α′, α′′] = 0. Let P (u) be the
osculating plane of the curve α, which is generated by its derivatives α′ and
α′′ and Q(v) the osculating plane of the curve β which is generated by β′ and
β′′. Fixing u, it is λ(u0, v) = α(u0) + β(v), we can see that β′ is contained
in P (u). Similarly β′′ is also contained in P (u). Hence, Q(v) is contained in
the osculating plane P (u). In the same way we can also have that P (u) is
contained in the osculating plane Q(v). So, we have that P (u) = Q(v).

Figure 4.2: Geometrical interpretation of the Lema 4.2.4.

�

Lemma 4.2.5 The regular surface S is an improper affine sphere with planar
asymptotic lines, if and only if, S is an hyperbolic paraboloid.

Proof. Recall that we can assume that the conormal vector is

ν(u, v) = (α1(u) + β1(v), α2(u) + β2(v), 1).
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From the above Lemma we have α(u) = α0 + uŪ0 and β(v) = β0 + vV̄0. Now,
we can reparametrize the normal vector as follows

ν(u, v) = (a1 + b2u+ c1v, a2 + b2u+ c2v, 1).

Its derivatives are

νu = (b1, b2, 0) and νv = (c1, c2, 0).

From Leliuvre Formula we have

Ψu = ν ∧ νu = (−b2, b1, a1b2 − a2b1, (b2c1 − b1c2)v)

and
Ψv = −ν ∧ νv = (c2,−c1, a2c1 − a1c2, (b2c1 − b1c2)v).

We can conclude that the improper affine sphere is

Ψ(u, v) = (−b2u+c2v, b1u−c1v, (a1b2−b1a2)u+(a2c1−a1c2)v+(b2c1−b1c2)uv).

Recall the most common parametrization of the hyperbolic paraboloid is
f(u, v) = (u, v, uv). We can apply an affine transformation A such that

Ψ(u, v) =


−b2 c2 0
b1 −c1 0

a1b2 − b1a2 a2c1 − a1c2 b2c1 − b1c2



u

v

uv


Thus, we proved the statement.

�

Theorem 4.2.6 An affine minimal surface with planar asymptotic lines is the
hyperbolic paraboloid.

4.3
Finding the solution of the minimal surfaces with planar curvature lines

Finding non-planar umbilic-free minimal surfaces with planar curvature
lines is equivalent to finding solutions to the following system of partial
differential equations:
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∆w − e−2w = 0 (minimal condition)

wuv + wuwv = 0 (planar curvature line condition).
(4.6)

In general, solving systems of partial differential equations may be difficult.
However, the next Lemma shows that (4.6) can be reduced to a system of
ordinary differential equations.

Lemma 4.3.1 The solution w : Ω→ R of (4.6) is precisely given by

ew(u,v) = 1 + f(u)2 + g(v)2

fu(u) + gv(v) (4.7)

where f(u) and g(v) are real-valued meromorphic functions satisfying the
following system of ordinary differential equations



(fu(u))2 = (c− d)f(u)2 + c

fuu(u) = (c− d)f(u)

(gv(v))2 = (d− c)g(v)2 + d

gvv(v) = (d− c)g(v).

(4.8)

for some real constants c and d such that c2 + d2 6= 0. Moreover, f and g can
be recovered from w by

wu = e−wf(u)

wv = e−wg(v)
(4.9)

Proof. Using the second equation on (4.6). Hence,

wuv = −wuwv =⇒ wu = e−wf(u).

Similarly computation shows wv = e−wg(v). Then (4.9) is proved for some
constants of integration f(u) and g(v). Using these definitions of f and g, it is
straightforward to check that (4.7) holds using (4.6). Now, from the fact that
wue

−w = e−2wf ,

fuu
1 + f 2 + g2 −

f(f 2
u − g2

v)
1 + f 2 + g2 = 0 (4.10)

and multiplying both sides by 2fu and integrating with respect to u tells us
that

f 2
u = g2

v +D(v)(1 + f 2 + g2) (4.11)

DBD
PUC-Rio - Certificação Digital Nº 1521995/CA



Chapter 4. Euclidean and Affine Minimal Surfaces 55

for some constant of integration D(v). Substituting (4.11) into (4.10), we get
fuu(u) = D(v)f(u) implying that D(v) = ĉ for some constant ĉ. Hence,

fuu = ĉf,

and again multiplying both sides by 2fu and integrating with respect to u

implies that
f 2
u = ĉf 2 + c

for some constant c. Similarly, from the fact that wve−w = e−2wg, we can show
that gvv = d̂g

g2
v = d̂g2 + d

(4.12)

for some constants d and d̂. Substituting these differential equations into (4.10)
shows that −d̂ = ĉ = c− d

�

To find the explicit solution for f , we should consider the initial con-
ditions of f(u) and g(v) satisfying (4.8). We assume f(0) = g(0) = 0 for
simplicity, therefore, we first identify the conditions for f(u) and g(v) having
a zero and prove that both f(u) and g(v) has a zero, using the next couple of
lemmas.

Lemma 4.3.2 f(u) (respectively g(v)) satisfying Lemma 4.3.1) has a zero if
and only if c ≥ 0 (respectively d ≥ 0).

Proof. If c = d, then the statement is a result of direct computation. Now,
assume c 6= d. First, to see that c ≥ 0 implies that f(u) has a zero, from (4.8),
we get

f(u) = C1e
√
c−du + C2e

−
√
c−du

for some complex constants C1 and C2 such that c = −4C1C2(c − d). If
c = 0, then either f(u) ≡ 0 or (4.8) implies d < 0, a contradiction to
(4.8). Now assume c > 0. Then, C1 and C2 are non-zero, and we may let
C1 = 1

2

√ c

c− d
= −C2 so that f is real-valued and f(0) = 0 .

On the other hand, if f(u0) = 0 for some u0, then (fu(u0))2 = c, implying
that c ≥ 0. Therefore, f(u) has a zero if and only if c ≥ 0. The case for g(v) is
proven similarly using (4.8).

�
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Lemma 4.3.3 Let f(u) and g(v) be functions satisfying (4.8). Then both f(u)
and g(v) have a zero.

Proof. Suppose by contradiction. It is that f does not have a zero. Then by the
above lemma, c < 0. From (4.8), we see that c < 0 implies c− d > 0. However,
(4.8) implies that if c − d > 0, then d > 0, a contradiction since c < 0 and
c > d. Therefore, f must always have a zero. Similarly, g must have a zero.

�

By shifting parameters u and v, we may assume f(0) = g(0) = 0. Using
these initial conditions, we may solve (4.8) to get the following:

f(u) =


± α√

α2 − β2 sinh(
√
α2 − β2u), if α 6= β

±αu, if α = β
, (4.13)

g(v) =


± β√

β2 − α2 sinh(
√
β2 − α2v), if α 6= β

±βv, if α = β
, (4.14)

where α2 = c and β2 = d. It should be noted that by letting u 7→ −u and
v 7→ −v, we may drop the plus or minus condition of (4.13) and (4.14). Finally,
we arrive at the following result.

Proposition 4.3.4 For non-planar minimal surface X(u, v) with planar cur-
vature lines, the real-analytic solution w : R2 → R of (4.6) is precisely given
by

ew(u,v) = 1 + f(u)2 + g(v)2

fu(u) + gv(v) (4.15)

with

f(u) =


α√

α2 − β2 sinh(
√
α2 − β2u), if α 6= β

αu, if α = β
, (4.16)

g(v) =


β√

β2 − α2 sinh(
√
β2 − α2v), if α 6= β

βv, if α = β
, (4.17)

where α + β > 0.

Proof. To see that w is a real number, we only need to show that fu(u)+gv(v) >
0 for any (u, v) ∈ ∑. If α = β, then fu + gv = α + β > 0. Without loss of
generality, assume α > β, since α+ β > 0,α > |β|. From (4.16) and (4.17), we
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have that

fu(u) = α cosh(
√
α2 − β2u) ≥ α,

gv(v) = β cosh(
√
β2 − α2v) = β cos(

√
α2 − β2v) ≥ −|β|.

since cosh(iz) = cos(z). Therefore, fu + gv ≥ α − |β| > 0. The case for α < β

can be proved similarly. Finally, the real-analyticity of f(u) and g(v) tells us
that the domain of w(u, v) can be extended to R2 globally.

�

Since the u-direction and v-direction of w(u, v) depend only on f(u) and
g(v) respectively, by choosing different values for α and β, we may analytically
understand how the surfaces behave in either direction. The following theorem
and Figure 4.3 explains the relationship between different values of α and β and
the surface generated by the corresponding w(u, v). Note that in the Figure
4.3, the subscript u↔ v denotes that the role of u and v are switched.

Theorem 4.3.5 Let X(u, v) be a non-planar minimal surface in R3 with
isothermic coordinates (u, v) such that ds2 = e2w(du2 + dv2). Then X has
planar curvature lines if and only if w(u, v) satisfies the Proposition 4.3.4.
Furthermore, for different values of α and β, the metric function of X(u, v)
have the following properties, based on Figure (4.3).

– 1O,1O′ are not periodic in the u-direction but periodic in the v-direction.
– 2O is not periodic in the u-direction but constant in the v-direction.
– 3O is not periodic in both the u-direction and v-direction.

Figure 4.3: Classification diagram for non-planar minimal surfaces with planar
curvature lines [8].

Theorem 4.3.6 (Weierstrass Representation Formula) Any minimal
surface X : Ω ⊂ C→ R3 can be locally represented as

X(z) = Re
∫

(1− h2, i(1 + h2), 2h)ηdz
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over a simply-connected domain Ω on which h is meromorphic, while η and
h2η are holomorphic.

Using the Weierstrass data (h, ηdz), we can classify different types of
minimal surfaces with planar curvature lines, stated here along with their
respective Weierstrass data. See [8] for more details.

4.4
Normal vector and the parametrizations of the minimal surfaces with
planar curvature lines

In this section we use Theorem 4.3.5 to identify the non-planar mini-
mal surfaces with planar curvature lines. Hence, we are going to find their
parametrization and obtain a deformation between them.

4.4.1
Normal vector

Note that if we normalize ~v1 and ~v2 the axial directions of the surface,
we can calculate the unit normal vector of the surface as we can see now.

Proposition 4.4.1 (Normal vector) Let f(u) and g(v) be as in Proposition
(4.3.4) If α, β 6= 0, then the unit normal vector N(u, v) is given by

N(u, v) =
(

1
α
wu,

1
β
wv,

√
1− 1

α2w
2
u −

1
β2w

2
v

)
. (4.18)

Now we calculate the Weierstrass data using the normal vector. Where
h is a meromorphic function and also it is the normal vector function under
stereographic projection

h(α,β)(u, v) = 1
1−N3

(N1 + iN2) =
√
α2 − β2

α− β
tanh

(√
α2 − β2

2 (u+ iv)
)

Since Q = −1
2(hu + ihv)η = −1

2 , we also have

η(α,β)(u, v) = 1
hu + ihv

= 1
α + β

cosh2
(√

α2 − β2

2 (u+ iv)
)

for α + β > 0. Let be α = r cos θ and β = r sin θ, then it is easy to see that
r is a homothety factor. Therefore, we assume r = 1, and rewrite h(α,β)(u, v)
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and η(α,β)(u, v) as follow

hθ(u, v) =



√
cos(2θ)

cos θ − sin θ tanh

√

cos(2θ)
2 (u+ iv)

 , if θ 6= π

4
u+ iv√

2
, otherwise.

,(4.19)

ηθ(u, v) =


1

cos θ + sin θ cosh2


√

cos(2θ)
2 (u+ iv)

 , if θ 6= π

4
1√
2
, otherwise.

,(4.20)

where θ ∈
(
−π4 ,

3π
4

)
.

Note that, (hθ)2ηθ is holomorphic, since hθ is meromorphic and ηθ is
an holomorphic function. Thus, we can use the Weierstrass representation
Theorem 4.3.6 to obtain the following parametrizations for minimal surfaces
with planar curvature lines.

Proposition 4.4.2 Let X(u, v) be a non-planar minimal surface with planar
curvature lines in R3. Then X(u, v) has the following parametrization

Xθ =





u cos θ
√

cos 2θ − sin θ sinh(u
√

cos 2θ) cos(v
√

cos 2θ))
(cos 2θ)3/2

v sin θ
√

cos 2θ − cos θ cosh(u
√

cos 2θ) sin(v
√

cos 2θ)
(cos 2θ)3/2

cosh(u
√

cos 2θ) cos(v
√

cos 2θ)√
cos 2θ



T

if θ 6= π

4

(
−u(−6 + u2 − 3v2)

6
√

2
,
v(−6− 3u2 + v2)

6
√

2
,
u2 − v2

2

)
, otherwise.

for some θ ∈
(
−π4 ,

3π
4

)
on its domain up to isometries and homotheties.

4.5
Continuous deformation of minimal surfaces with planar curvature lines

In this section, we show that the parameter θ defines a locally continuous
deformation between non-planar minimal surfaces preserving the planar curva-
ture line condition. Furthermore, by introducing a homothety factor depending
on θ, we can extend the deformation including the plane.
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We begin this section showing that the deformation of minimal surfaces
in R3 with planar curvature lines is continuous. The continuity is obvious at
any θ 6= π

4 . Thus, we only need to check when θ = π

4 .
From the Weierstrass data, it is easy to check that at any point (u, v),

lim
θ→π

4

hθ(u, v) = h
π
4 (u, v) and lim

θ→π
4

ηθ(u, v) = η
π
4 (u, v).

Note also that, each component of the parametrization in Proposition 4.4.2 is
also continuous at θ = π

4 at any point (u, v).

lim
θ→π

4

Xθ(u, v) = X
π
4 (u, v).

Hence, Xθ(u, v) is a continuous deformation.
Now, we would like to extend our parametrization to include the plane.

To do so, we will define the homotethy Rθ as follow

Rθ =
(

1− sin
(
θ + π

4

))
| cos 2θ|+ sin

(
θ + π

4

)
. (4.21)

For θ ∈
[
−π

4 ,
3π
4

]
. Note that Rθ > 0 and Rθ = 0 if and only if θ = π

4 and
θ = 3π

4 . Now we define
X̄θ = RθXθ(u, v).

It is a straightforward computation that

lim
θ↘−π4

X̄θ(u, v) = 3√
2

(u,−v, 0) = lim
θ↗ 3π

4

X̄θ(u, v).

Therefore, the extension of Xθ is X̄θ. It is defined as follows

X̄θ(u, v) =


3√
2

(u,−v, 0), if θ = −π4 ,
3π
4 ,

RθXθ(u, v), if θ ∈
(
−π4 ,

3π
4

)
.

(4.22)

It again is a continuous deformation for θ ∈
[
−π4 ,

3π
4

]
.

Hence, we obtained a classification and deformation of minimal surfaces
with planar curvature lines. Therefore, we state this result as a theorem.

Theorem 4.5.1 If X̄θ(u, v) is a minimal surface with planar curvature lines
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in R3, then the surface is given by the following parametrization on its domain

X̄θ(u, v) =



Rθ


u cos θ

√
cos 2θ − sin θ sinh(u

√
cos 2θ) cos(v

√
cos 2θ))

(cos 2θ)3/2

v sin θ
√

cos 2θ − cos θ cosh(u
√

cos 2θ) sin(v
√

cos 2θ)
(cos 2θ)3/2

cosh(u
√

cos 2θ) cos(v
√

cos 2θ)
cos 2θ


T

if θ 6= −π4 ,
π

4 ,
3π
4 .

(
−u(−6 + u2 − 3v2)

6
√

2
,
v(−6− 3u2 + v2)

6
√

2
,
u2 − v2

2

)
, if θ = π

4 .

3√
2

(u,−v, 0), if θ = −π4 ,
3π
4 .

up to isometries and homotheties of R3 for some θ ∈
[
−π4 ,

3π
4

]
, where

Rθ =
(
1− sin

(
θ + π

4

))
| cos 2θ| + sin

(
θ + π

4

)
. In fact it must be a piece of

one, and only one, of the following

– plane
(
θ = −π4 ,

3π
4

)
,

– catenoid
(
θ = 0, π2

)
,

– Enneper surface
(
θ = π

4

)
, or

– a surface in the Bonnet family θ ∈
(
−π4 ,

3π
4

)
\
{

0, π4 ,
π

2

}
.

Moreover, the deformation X̄(u, v) depending on the parameter θ is continuous
(see Figure 4.5).

Figure 4.4: Deformation of minimal surfaces with planar curvature lines [8].
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Furthermore, considering the conjugate of minimal surfaces with planar cur-
vature lines, we get the following classification and deformation of minimal
surfaces that are also affine minimal maps.

Theorem 4.5.2 If X̂θ(u, v) is a minimal surface that is also an affine minimal
surface in R3, then the surface is given by the following parametrization on its
domain

X̂θ(u, v) =



Rθ


−v cos θ

√
cos 2θ + sin θ cosh(u

√
cos 2θ) sin(v

√
cos 2θ))

(cos 2θ)3/2

u sin θ
√

cos 2θ − cos θ sinh(u
√

cos 2θ) cos(v
√

cos 2θ)
(cos 2θ)3/2

− sinh(u
√

cos 2θ) sin(v
√

cos 2θ)
cos 2θ


T

if θ 6= −π4 ,
π

4 ,
3π
4 .

(
−v(6− 3u2 + v2)

6
√

2
,
−u(6 + u2 − 3v2)

6
√

2
,
−uv

2

)
, if θ = π

4 .

3√
2

(−v,−u, 0), if θ = −π4 ,
3π
4 .

In fact it must be a piece of one, and only one, of the following

– plane
(
θ = −π4 ,

3π
4

)
,

– helicoid
(
θ = 0, π2

)
,

– Enneper surface
(
θ = π

4

)
, or

– a surface in the Thomsen family θ ∈
(
−π4 ,

3π
4

)
\
{

0, π4 ,
π

2

}
.

up to isometries and homotheties of R3 for some θ ∈
[
−π4 ,

3π
4

]
Moreover, the

deformation X̂(u, v) depending on the parameter θ is continuous (see Figure
4.5).
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Figure 4.5: Deformation of minimal surfaces that are also affine minimal maps [8].

DBD
PUC-Rio - Certificação Digital Nº 1521995/CA



5
Affine Maximal Surfaces with Singularities in the convex case

In this last Chapter, we will take the solution of the affine Cauchy
problem and give the conditions to the existence and uniqueness of affine
maximal maps with the desired singularities. In particular, we also characterize
when an analytic curve of R3 is the singular curve of some affine maximal maps
and improper affine sphere with prescribed cuspidal edges and swallowtails. See
[7] for more details.

5.1
Affine maximal surfaces constructed from a curve

From now, we consider an affine maximal map Ψ : Ω → R3 with affine
conormal ν : Ω → R3 and a regular analytic curve γ : I → Ω, for an interval
I.
We can denote α = Ψ ◦ γ and U = ν ◦ γ, with parameter s ∈ I. Thus, by the
Inverse Function Theorem, there exists a conformal parameter z = s+ it and
we can parametrize a piece of the affine maximal map by Ψ : Ω ⊂ C → R3

with I ⊂ Ω,

Ψ(s, 0) = α(s), ν(s, 0) = U(s). (5.1)

Proposition 5.1.1 The analytic maps α, η and U satisfy the condition
η ∧ U = −α. Moreover, ν is given by

ν(z) = Re
(
U(z)− i

∫ z

s0
η(ζ)dζ

)
, z ∈ Ω ⊂ C, s0 ∈ I. (5.2)

Proof. We claim that ν(z) = Re
(
U(z)− i

∫ z
s0
η(ζ)dζ

)
defined as follows is the

solution of the following PDE,


∆ν = 0 in Ω,

ν(s, 0) = U(s), on Ω,

νt(s, 0) = η(s), on ∂Ω.

(5.3)

When η(s) = 0 is trivial. Now, we only need to prove when η(s) 6= 0.
It is easy to see that ν(z) is harmonic, since is the real part of an holomorphic
function.
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Now we need to prove that ν(z) satisfies the boundary conditions. Observe
that

ν(s, 0) = Re
(
U(s+ i0)− i

∫ s+it

s0
η(ζ)dζ

)
= Re

(
U(s)− i

∫ s

s0
η(ζ)dζ

)
= U(s).

It follows from the fact that
∫ s
s0
η(ζ)dζ is real then

Re
(
−i
∫ s

s0
η(ζ)dζ

)
= 0.

From the Cauchy- Riemann equations

U(z) = u(s, t) + iv(s, t) = Re U(s, t) + i Im U(s, t).

us = vt and ut = −vs.

That is,

(Re U(s, t))s = ( Im U(s, t))t and (Re U(s, t))t = −( ImU(s, t))s

νt(z) = (Re U(s, t))t −
(
Re

(
i
∫ s+it

s0
η(ζ)dζ

))
t

νt(s, t) = − (Im U(s, t))s − Re (i2η(s+ it))

In t = 0, we have that

νt(s, 0) = − (Im U(s))s + η(s)

where Im (Us(s)) = 0, since, Us(s) is real. Hence, we can conclude that

νt(s, 0) = η(s).

That is, we proved that ν(z) given by

ν(z) = Re
(
U(z)− i

∫ z

s0
η(ζ)dζ

)
, z ∈ Ω ⊂ C, s0 ∈ I. (5.4)

is the solution of (5.3).
�

We conclude that, the map Ψ can be recovered by the following formula

Ψ = α(s0) + 2Re
∫ z

s0
iν × νz, z ∈ Ω ⊂ C, s0 ∈ I. (5.5)
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with U(z) and η(z) the holomorphic extensions of U(s) = ν(s, 0) and η(s) =
νt(s, 0) to a neighborhood Ω of I.

5.2
Singular curves of affine maximal maps

From Lelieuvre Formula we have that, along α

η ∧ U = −α (5.6)

and s0 ∈ I is a singular point of Ψ if

ρ(s0) = U · α′′ = −U ′ · α′ = 0, (5.7)

where by prime we indicate derivative with respect to the variable s.
Now, we try to analyze the solution of the above problem when α : I →

R3 is a singular curve of Ψ. This case is interesting since the data U and η are
just determined by α and two analytic functions λ and φ. In fact, from (5.6)
and (5.7) we have

α′ ∧ α′′ = −(η ∧ U) ∧ α′′

= −(η · α′′)U + (U · α′′)η,

where, U · α′′ = 0, since s0 is a singular point of Ψ and (u ∧ v) ∧ w =
(u · w)v − (v · w)u, where by · we indicate the inner product.
Hence, we have in that case

U = α′ ∧ α′′

−η · α′′
.

Setting λ = −η · α′′, we get the following formula to find the data U and it is
only determinated by α and a analytic function λ, where λ : I → R.

U = α′ ∧ α′′

λ
. (5.8)

Now, we need to prove that

η = φα′ ∧ α′′ − λ

|α′ ∧ α′′|2
(α′ ∧ α′′) ∧ α′. (5.9)

Using equation (5.8), we have that

Uλ = α′ ∧ α′′.

Replacing U in the above equation we have

η = φUλ− λ

λ2|U |2
(Uλ) ∧ α′.
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to prove our assumption it is sufficient to prove that(
η + U ∧ α′

|U |2

)
‖ U.

where by ‖ we indicate parallel to. Now we need to verify that
(
η + U ∧ α′

|U |2

)
∧ U = 0.

We know that

(η ∧ U) +
((

U ∧ α′

|U |2

)
∧ U

)
= −α′ +

((
U ∧ α′

|U |2

)
∧ U

)
.

If, Û = U

|U |
. We get that

(
U ∧ α′

|U |2

)
∧ U = (Û ∧ α′) ∧ Û

= (Û · Û)α′ − (α′ · Û)Û

= α′.

Since, we have that α′ · Û = 0 from the equation (5.7). Hence, we have that

(η ∧ U) +
((

U ∧ α′

|U |2

)
∧ U

)
= 0.

Thus, equation (5.9) holds for some analytic function φ : I → R3.
Now, we can obtain some results about singular curves of affine maximal

maps.

5.3
Affine maximal surface with singularities

In this section we will take the solution of the affine Cauchy problem
and give the conditions to the existence and uniqueness of affine maximal
maps with cuspidal edges or swallowtail singularities. In particular, we also
characterize when an analytic curve of R3 is the singular curve of some affine
maximal map with the desired singularities. See [1] and [7].

We know that z0 ∈ Ω is a non-degenerate singular point of the map, if and
only if,

ρ(z0) = 0, dρ |z0 6= 0.
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In this case, either Ψ(z0) is an isolated singularity or the singular set of Ψ
around z0 locally becomes a regular curve γ : I ⊂ R → Ω and we have the
following criterion due to [7] for the singular curve α = Ψ ◦ γ.

Theorem 5.3.1 If v is a vector field along γ, with v(s) 6= 0 in the kernel of
dΨγ(s) for any s ∈ I, then the following hold.

– γ(0) = z0, is a cuspidal edge if and only if det(γ′(0), v(0)) 6= 0, where
det denotes the determinant of 2 × 2 matrices and prime indicates
differentiation with respect to s.

– γ(0) = z0 is a swallowtail if and only if det(γ′(0), v(0)) = 0 and

d

ds

∣∣∣∣∣
s=0

det (γ′(s), v(s)) 6= 0.

Theorem 5.3.2 Let α : I → R3 be an analytic curve with non-vanishing
curvature on I. Then, for any analytic functions λ, φ : I → R3 λ > 0, there
is a unique affine maximal map Ψ with U and η given by (5.8) and (5.9),
respectively.
Moreover, α is a singular curve of Ψ and α(s) is a cuspidal edge for all s ∈ I.

Proof. From the hypothesis, we can define the affine maximal map Ψ as in (5.5),
with the affine conormal ν given by (5.4). Now, recall that ν is harmonic, hence
from (5.8) and (5.9) we get that, along α.

[ν, νs, νt] = [U,U ′, η] = −〈α′, U ′〉 = 0, (5.10)

due to (5.7) we have the last part of the above equation. The partial derivative
of the above determinant with respect to t is

[ν, νs, νt]t = [νt, νs, νt] + [ν, νst, νt] + [ν, νs, νtt]

= [ν, νst, νt]− [ν, νs, νss]

= [U, η′, η]− [U,U ′, U ′′].

From (5.9) we have that,

η′ = φλU ′ + (φ′λ+ φλ′)U − 1
|U |2

(U ′ ∧ α′ + U ∧ α′′) + 2(U ∧ α′)
|U |3

.
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Note also that,

[U, η′, η] = −α′ · η′

= −α′ ·
(
φλU ′ + (φ′λ+ φλ′)U − 1

|U |2
(U ′ ∧ α′ + U ∧ α′′) + 2(U ∧ α′)

|U |3

)

= α′ ·
(
U ∧ α′′

|U |2

)

= 1
|U |2

U · (α′′ ∧ α′)

= −λ
|U |2

U · U

= −λ.

Here, we have used (5.8) and (5.9), to conclude that α′ · U = [α′, α′, α′′]
λ

= 0,
α′ · U ′ = 0, [α′, U ′, α′] = 0, and α′ · (U ∧ α′) = [α′, U, α′] = 0.

Now, we compute the first and second derivative of U

U ′ = α′ ∧ α′′′

λ
− λ′(α′ ∧ α′′)

λ2 .

and

U ′′ = (α′ ∧ α′′′)′

λ
− 2λ′(α′ ∧ α′′′)

λ2

= (α′ ∧ α(4)) + α′′ ∧ α′′′

λ
− 2λ′(α′ ∧ α′′′)

λ2 .

The determinant of the vector U , U ′ and U ′′ is

[U,U ′, U ′′] =
[
α′ ∧ α′′

λ
,
α′ ∧ α′′′

λ
− λ′(α′ ∧ α′′)

λ2 ,
(α′ ∧ α(4)) + α′′ ∧ α′′′

λ
− 2λ′(α′ ∧ α′′′)

λ2

]

=
[
α′ ∧ α′′

λ
,
α′ ∧ α′′′

λ
,
(α′ ∧ α(4)) + α′′ ∧ α′′′

λ

]
−

−
[
α′ ∧ α′′

λ
,
λ′(α′ ∧ α′′)

λ2 ,
(α′ ∧ α(4)) + α′′ ∧ α′′′

λ

]
−

−
[
α′ ∧ α′′

λ
,
α′ ∧ α′′′

λ
,
2λ′(α′ ∧ α′′′)

λ2

]
+

+
[
α′ ∧ α′′

λ
,
λ′(α′ ∧ α′′)

λ2 ,
2λ′(α′ ∧ α′′′)

λ2

]
.

=
[
α′ ∧ α′′

λ
,
α′ ∧ α′′′

λ
,
(α′ ∧ α(4)) + α′′ ∧ α′′′

λ

]

=
[
α′ ∧ α′′

λ
,
α′ ∧ α′′′

λ
,
α′ ∧ α(4)

λ

]
+
[
α′ ∧ α′′

λ
,
α′ ∧ α′′′

λ
,
α′′ ∧ α′′′

λ

]
.
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Remember that, (A ∧B) ∧ (A ∧ C) = [A,B,C]A, then we have that

[
α′ ∧ α′′

λ
,
α′ ∧ α′′′

λ
,
α′ ∧ α(4)

λ

]
= 1
λ3 [(α′ ∧ α′′) ∧ (α′ ∧ α′′′)] · (α′ ∧ α(4))

= 1
λ3 [α′, α′′, α′′′]α′ · (α′ ∧ α(4))

= 1
λ3 [α′, α′′, α′′′] [α′, α′, α(4)] = 0.

Similarly, we can compute[
α′ ∧ α′′

λ
,
α′ ∧ α′′′

λ
,
α′′ ∧ α′′′

λ

]
= 1
λ3 [(α′ ∧ α′′) ∧ (α′ ∧ α′′′)] · (α′′ ∧ α′′′)

= 1
λ3 [α′, α′′, α′′′]α′ · (α′′ ∧ α′′′)

= 1
λ3 [α′, α′′, α′′′] [α′, α′′, α′′′].

Hence, we conclude that

[U,U ′, U ′′] = 1
λ3 [α′, α′′, α′′′]2.

Furthermore,
[ν, νs, νt]t = −λ− 1

λ3 [α′, α′′, α′′′]2 < 0.

Consequently, [ν, νz, νz̄] does not vanish identically and the points of α
are the unique singular points in a neighborhood of it.
Along the α we have

Ψs = α′ and Ψt = − [α′, α′′, α′′′]
λ2 α′. (5.11)

Note also that,

dΨ ·X =


p p

Ψs Ψt

p p


x
y

 =


0
0
0



=


Ψ1
s Ψ1

t

Ψ2
s Ψ2

t

Ψ3
s Ψ3

t


x
y

 =


0
0
0


so,

α′x−− [α′, α′′, α′′′]
λ2 α′y = 0

if v = (x, y), we can conclude that the kernel of dΨ at γ(s) = (s, 0) is spanned
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by
v = ([α′, α′′, α′′′], λ2).

Hence,

det(γ′, v) =
 1 0

[α′, α′′, α′′′] λ2


= λ2 6= 0.

and we can conclude that α(s) is a cuspidal edge for all s ∈ I. Where we are
using the techniques developed in [10].

�

Theorem 5.3.3 Let α : R → R3 be an analytic curve with non-vanishing
curvature on I−{0} and such that 0 ∈ I is a zero of α′, α′∧α′′ and [α′, α′′, α′′′]
of order 1, 2 and 3 respectively. Then, for any analytic functions λ, φ : I → R,
λ > 0 on I − {0} and with a zero of order 2 in 0, there is a unique affine
maximal map Ψ with U and η given by (5.8) and (5.9), respectively.
Moreover, α is a singular curve of Ψ and α(0) is a swallowtail.

Proof. We are following the arguments of the above proof, from (5.8), (5.9)
and (5.11). Note also that U , η and Ψt are well defined by the hypothesis.

Hence, from (5.8) and (5.11) we have

U = α′ ∧ α′′

λ
.

Ψs = α′ Ψt = − [α′, α′′, α′′′]
λ2 α′.

It is easy to see that these equations are well defined if 0 ∈ I is a zero of
α′, α′ ∧ α′′ and [α′, α′′, α′′′] of order 1, 2, 3 and λ > 0 with a zero of order 2 in
0. Since in the data U its numerator has order 2 then its denominator would
have also order 2. On the other hand, if α′ has order 1 then the numerator of
Ψt should have order 4 since its denominator has order 4, then [α′, α′′, α′′′] has
order 3.
However, in this case, the kernel of dΨ at γ(s) = (s, 0) is spanned by

v =
(

1, λ2

[α′, α′′, α′′′]

)
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and α(0) is a swallowtail, since 0 is a zero of orden 1 of

det(γ′, v) = λ2

[α′, α′′, α′′′] .

�

5.4
Improper affine spheres with singularities

When we fixed λ and η, from (5.7) and Theorem (3.4.1), if we take
λ = [α′, α′′, ξ0] and η = −ξ0 ∧ α′, with ξ0 = (0, 0, 1), then we can deduce the
following results for definite improper affine spheres with singular curves.

Corollary 5.4.1 Let α : I → R3 be an analytic curve with [α′, α′′, ξ0] 6= 0 on
I. Then, there is a unique definite improper affine map containing α(I) in its
singular set.
Moreover, α(s) is a cuspidal edge for all s ∈ I.

Corollary 5.4.2 Let α : I → R3 be an analytic curve with [α′, α′′, ξ0] 6= 0 on
I − {0} and such that 0 ∈I is a zero of α′, α′ ∧ α′′, [α′, α′′, ξ0] and [α′, α′′, α′′′]
of order 1, 2, 2 and 3 respectively. Then, there is a unique definite improper
affine map containing α(I) in its singular set and α(0) is a swallowtail.

5.5
Examples of affine maximal surfaces

In this section, we give some examples of affine maximal maps with
cuspidal edges.

Example 5.5.1 Take the curve α : R → R3 and the functions λ, φ : R → R
given by

α(s) = (cos(s), sin(s), 0), λ, φ = 1, s ∈ R.

From Theorem 5.3.2,

α′(s) = (− sin(s), cos(s), 0), α′′(s) = (− cos(s),− sin(s), 0).

The data U is
U(s) = α′ ∧ α′′

λ
= (0, 0, 1).
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And, similarly with straight-forward calculations η is,

η(s) = φα′ ∧ α′′ − λ

|α′ ∧ α′′|2
(α′ ∧ α′′) ∧ α′.

= (cos(s), sin(s), 1)

It provides the harmonic affine conormal ν : R2 → R3,

ν(z) = Re
(
U(z)− i

∫ z

s0
η(ζ)dζ

)
, z ∈ Ω ⊂ C

= Re
(

(0, 0, 1)− i
∫ z

s0
(cos ζ, sin ζ, 1)dζ

)
,

= Re ((0, 0, 1)− i(sin(z)− sin(s0),− cos(z)− cos(s0), z − s0))

if z = s+ it,

sin(s+ it) = sin(s) cos(it) + cos(s) sin(it) = sin(s) cosh(t) + i cos(s) sinh(t).

Similarly,
cos(z) = cos(s) cosh(t)− i sin(s) sinh(t).

Therefore,
ν(s, t) = (cos(s) sinh(t), sin(s) sinh(t), 1 + t).

Its derivatives are

νt(s, t) = (cos(s) cosh(t), sin(s) cosh(t), 1),

νs(s, t) = (− sin(s) sinh(t), cos(s) sinh(t), 0).

Furthermore, using Lelievre formula, i.e.

Ψs = ν∧νt = (sin s sinh t−(1+t) sin s cosh t,− cos s sinh t+(1+t) cos s cosh t, 0),

Ψt = νs ∧ ν = ((1 + t) cos s sinh t, (1 + t) sin s sinh t,− sinh2 t).

and the affine maximal map Ψ : R2 → R3 with coordinates,

Ψ1(s, t) = (1 + t) cos s cosh t− cos s sinh t,

Ψ2(s, t) = (1 + t) sin s cosh t− sin s sinh t,

Ψ3(s, t) = t

2 −
1
4 sinh 2t.

Thus, around t = 0, the singular set of Ψ is the circle α(R) = Ψ(R×{0}) and
the singularities are cuspidal edges, (see Figure 5.1).
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Figure 5.1: Affine maximal map with cuspidal edges.

Example 5.5.2 Similarly, we can obtain an affine maximal map Ψ : R2 → R3

with

α(s) = (cos(s), sin(s), s), λ(s) = φ(s) = 1, s ∈ R.

We have that

α′(s) = (− sin(s), cos(s), 1), α′′(s) = (− cos(s),− sin(s), 0).

Then,
U = (sin(s),− cos(s), 1).

and

η(s) = φα′ ∧ α′′ − λ

|α′ ∧ α′′|2
(α′ ∧ α′′) ∧ α′.

= (sin(s),− cos(s), 1)− 1
2(−2 cos(s),−2 sin(s), 0)

= (sin(s) + cos(s), sin(s)− cos(s), 1).

The harmonic affine conormal ν : R2 → R3 is

ν(z) = Re
(
U(z)− i

∫ z

s0
η(ζ)dζ

)
, z ∈ Ω ⊂ C

= Re
(

(sin(s),− cos(s), 1)− i
∫ z

s0
(sin(z) + cos(z), sin(z)− cos(z), 1)dζ

)
,

= Re((sin(z) + i cos(z)− i sin(z)− i cos(s0) + i sin(s0),− cos(z) + i cos(z)+

− i sin(z)− i cos(s0)− i sin(s0), 1− iz + is0)).
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If z = s+ it, we have that,

sin(z) = sin(s) cos(it) + cos(s) sin(it) = sin(s) cosh(t) + i cos(s) sinh(t).

Similarly,
cos(z) = cos(s) cosh(t)− i sin(s) sinh(t).

The conormal vector is

ν = (sin s cosh t+sin s sinh t+cos s sinh t,− cos s cosh t+sin s sinh t−cos s sinh t, 1+t),

where its derivatives are

νs = (cos s cosh t+cos s sinh t−sin s sinh t, sin s cosh t+sin s sinh t+cos s sinh t, 0),

νt = (sin s sinh t+sin s cosh t+cos s cosh t,− cos s sinh t+sin s cosh t−cos s cosh t, 1).

Therefore, using Lelievre formula we can obtain Ψs = (Ψ1
s,Ψ2

s,Ψ3
s) = ν ∧ νt,

where each coordinate is

Ψ1
s = −t sin s cosh t+ t cos s cosh t+ t cos s sinh t− sin s cosh t+ sin s sinh t,

Ψ2
s = t sin s cosh t+ t sin s sinh t+ t cos s cosh t+ cos s cosh t− cos s sinh t,

Ψ3
s = 1.

In the same way, we can obtain, Ψt = (Ψ1
t ,Ψ2

t ,Ψ3
t ) = νs ∧ ν, with coordinates

Ψ1
t = (1 + t)(sin s cosh t+ sin s sinh t+ cos s sinh t),

Ψ2
t = (t+ 1)(− cos s cosh t+ sin s sinh t− cos s sinh t),

Ψ3
t = −3 cosh2 t− 2 cosh t sinh t+ 2.

Integrating Ψs with respect to s, we get that

Ψ1(s, t) = t sin s cosh t+ t sin s sinh t+ t cos s cosh t+ cos s cosh t− cos s sinh t,

Ψ2(s, t) = t sin s cosh t− t cos s cosh t− t cos s sinh t+ sin s cosh t− sin s sinh t,

Ψ3(s, t) = s.

Similarly, integrating Ψt with respect to t

Ψ1(s, t) = t sin s cosh t+ t sin s sinh t+ t cos s cosh t+ cos s cosh t− cos s sinh t,

Ψ2(s, t) = t sin s cosh t− t cos s cosh t− t cos s sinh t+ sin s cosh t− sin s sinh t,

Ψ3(s, t) = −3
2 cosh t sinh t+ 1

2t− cosh2 t.
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Hence, the affine maximal map Ψ : R2 → R3 with coordinates is,

Ψ1(s, t) = t sin s cosh t+ t sin s sinh t+ t cos s cosh t+ cos s cosh t− cos s sinh t,

Ψ2(s, t) = t sin s cosh t− t cos s cosh t− t cos s sinh t+ sin s cosh t− sin s sinh t,

Ψ3(s, t) = −3
2 cosh t sinh t+ 1

2t− cosh2 t+ s.

That is, with the helix α(R) = Ψ(R× {0}) in its singular set.(see Figure 5.2)

Figure 5.2: Affine maximal map with cuspidal edges.

Example 5.5.3 The curve α : R→ R3 defined by

α(s) =
(

cos(s) + 1
2 cos(2s),− sin(s) + 1

2 sin(2s), 1
6 cos(3s)

)
.

has derivatives

α′(s) =
(
− sin(s)− sin(2s),− cos(s) + cos(2s),−1

2 sin(3s)
)
,

α′′(s) =
(
− cos(s)− 2 cos(2s), sin(s)− 2 sin(2s),−3

2 cos(3s)
)
.

The data U and η are,

U(s) = α′ ∧ α′′

λ
=
(1

2 cos(2s)− cos(s), 1
2 sin(2s) + sin(s), 1

)
.

η = −ξ0 ∧ α′ = (cos(2s)− cos(s), sin(s)− sin(2s), 0).

Therefore,
[α′, α′′, α′′′] = sin(3s)− 1

2 sin(6s).
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with the same 2π -periodic zeros, 2
3π,

4
3π and 2π, that the function λ : R→ R

given by
λ(s) = 1− cos(3s).

Note also that, λ = [α′, α′′, ξ0], where ξ0 = (0, 0, 1).

Those provide the harmonic affine conormal ν = (ν1, ν2, ν3), where each
coordinate is

ν1(s, t) = 1
2 cos(2s) cosh(2t)− cos(s) sinh(t) + cosh(t)(− cos(s) + cos(2s) sinh(t)),

ν2(s, t) = ν2 = 1
2 cosh(2t) sin(2s) + sin(s)(cosh(t) + sinh(t) + cos(s) sinh(2t),

ν3(s, t) = 1.

From Theorem 5.3.3, we can obtain an affine maximal map Ψ : R2 → R3 with
α as a singular curve with three swallowtails connected by three arcs with
cuspidal edges, (see Figure 5.3).

Ψ1(s, t) = 1
2e

t(2 cos(s) + et cos(2s)),

Ψ2(s, t) = e−t(−1 + et cos(s)) sin(s),

Ψ3(s, t) = 1
24e

2t(12− 3e2t + 4et cos(3s)).

Figure 5.3: Affine maximal map with 3 swallowtails.

DBD
PUC-Rio - Certificação Digital Nº 1521995/CA



Bibliography

[1] J. A. Aledo, A. Martínez and F. Milán. The affine Cauchy problem, J.
Math. Anal. Appl. 351 (2009), 70-83.

[2] J. A. Aledo, A. Martínez and F. Milán. Affine maximal surfaces with
singularities, Results Math. 56 (2009), 91-107.

[3] E. Calabi,Affine differential geometry and holomorphic curves, Lect.
Notes Math. 1422 (1990), 15-21.

[4] W. Blaschke, Vorlesungen über Differentialgeometrie II, Affine Dif-
ferentialgeometrie. Springer, 1923.

[5] Manfredo do Carmo, Differential Geometry of Curves and Surfaces,
NJ. Prentice Hall, 1976.

[6] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge
University Press, 1994.

[7] F. Milán, Singular curves of affine maximal maps, Fundamental Journal
of Mathematics and Mathematical Sciences, Vol. 1, Issue 1, 2014, 57-68.

[8] J. Cho, and Y. Ogata, Deformation of minimal surfaces with planar
curvature lines, J. Geom. (2016). doi:10.1007/s00022-016-0352-0. Vol. 108,
Issue 2, pp 463–479.

[9] U. Abresch. Constant mean curvature tori in terms of elliptic
functions, J. Reine Angew. Math., 374:169-192, 1987.

[10] M. Kokubu, W. Rossman, K. Saji, M. Umehara and K. Yamada, Singular-
ities of flat fronts in hyperbolic space, . Pacific J. Math. 221 (2005),
303-351.

[11] E. Calabi, Convex Affine Maximal Surfaces, Results. Math. (1988) 13:
199. doi:10.1007/BF03323241.

[12] L. Verstraelen, L. Vrancken, Affine Variation Formulas and
Affine Minimal Surfaces, Results. Math. (1988) 13: 199.
doi:10.1007/BF03323241.

DBD
PUC-Rio - Certificação Digital Nº 1521995/CA



Bibliography 79

[13] L. Bers,Riemann Surfaces, New York University, Institute of Mathematical
Sciences, New York, 1957–1958, pp. 15–35.

[14] Vesna Velickovic, Visualization of Enneper’s Surface by Line
Graphics, Filomat 31:2 (2017), 387–405 DOI 10.2298/FIL1702387V.

DBD
PUC-Rio - Certificação Digital Nº 1521995/CA


	Affine Minimal Surfaces with Singularities
	Resumo
	Table of contents
	Introduction
	Literature Review
	Dissertation Outline

	Euclidean Differential Geometry
	Regular surfaces
	The Gauss Theorem and the compatibility equations
	Euclidean minimal surfaces
	The Hopf differential


	Affine Differential Geometry
	Berwald-Blaschke metric 
	Relation between the first fundamental affine form and the coefficients of the second euclidean fundamental form 

	Affine normal and conormal maps
	Affine curvatures

	Isothermal coordinates
	Asymptotic coordinates
	Improper affine spheres and affine maximal maps
	Affine maximal maps


	Euclidean and Affine Minimal Surfaces
	Minimal surfaces with planar curvature lines 
	Relationship betweeen affine and euclidean minimal surfaces
	Conjugate minimal surfaces

	Finding the solution of the minimal surfaces with planar curvature lines
	Normal vector and the parametrizations of the minimal surfaces with planar curvature lines 
	Normal vector

	Continuous deformation of minimal surfaces with planar curvature lines

	Affine Maximal Surfaces with Singularities in the convex case
	Affine maximal surfaces constructed from a curve
	Singular curves of affine maximal maps
	Affine maximal surface with singularities
	Improper affine spheres with singularities
	Examples of affine maximal surfaces

	Bibliography



